Content

1. Illustration

Sample outranking relation Ranking-by-choosing Partial weak ranking result

2. The setting

Weakly complete relations The Rubis choice procedure **Properties**

3. Ranking-by-choosing

Algorithm **Properties Empirical Validation**

1/29 2/29

Illustration

Illustration

The setting

Ranking-by-choosing

Sample performance tableau

On ranking by first and last choosing

MICS: Algorithmic Decision Theory

Raymond Bisdorff

University of Luxembourg

January 20, 2021

Let $X = \{a_1, ..., a_7\}$ be seven potential decision actions evaluated on three cost criteria (g_1, g_4, g_5) of equi-significance 1/6 and two benefit criteria (g_2, g_3) of equi-signifiance 1/4. The given performance tableau is shown below.

Objectives		Costs	Benefits			
Criteria	$g_1(\downarrow)$	$g_4(\downarrow)$	$g_5(\downarrow)$	$g_2(\uparrow)$	g ₃ (↑)	
weights×12	2.0	2.0	2.0	3.0	3.0	
indifference	3.41	4.91	-	-	2.32	
preference	6.31	8.31	-	-	5.06	
veto	60.17	67.75	-	-	48.24	
	22.49	36.84	7	8	43.44	
a_2	16.18	19.21	2	8	19.35	
a 3	29.41	54.43	3	4	33.37	
a_4	82.66	86.96	8	6	48.50	
<i>a</i> ₅	47.77	82.27	7	7	81.61	
a_6	32.50	16.56	6	8	34.06	
a ₇	35.91	27.52	2	1	50.82	

Sample outranking relation

The resulting bipolar-valued outranking relation \succeq is shown below.

Table: *r*-valued bipolar outranking relation

$r(\succsim) \times 12$	$ a_1 $	a ₂	<i>a</i> ₃	a ₄	a ₅	a 6	a ₇
a_1	-	0	+8	+12	+6	+4	-2
a 2	+6	_	+6	+12	0	+6	+6
a 3	-8	-6	_	0	-12	+2	-2
a ₄	-12	-12	0	_	-8	-12	0
a 5	-2	0	+12	+12	_	-6	0
<i>a</i> ₆	+2	+4	+8	+12	+6	_	+2
a ₇	+2	-2	+2	+6	0	+2	_

- 1. a₆ is a Condorcet winner,
- 2. a₂ is a weak Condorcet winner,
- 3. a4 is a weak Condorcet looser.

3/29 4/29

Ranking by best-choosing and worst-rejecting – I

- Let X_1 be the set X of potential decision actions we wish to rank.
- While the remaining set X_i (i = 1, 2, ...) of decision actions to be ranked is not empty, we extract from X_i the best (B_i), respectively worst (W_i) Rubis choice recommendations and set $X_{i+1} = X_i B_i$, respectively $X_{i+1} = X_i W_i$.
- Both iterations determine, hence, two usually slightly different – opposite weak rankings on X:
 - 1. a ranking-by-best-choosing and,
 - 2. a ranking-by-worst-rejecting.

Ranking by best-choosing and worst-rejecting - II

Ranking by recursively choosing:

```
>>> from transitiveDigraphs\
   import\
   RankingByBestChoosingDigraph
>>> rbbc =\
   RankingByBestChoosingDigraph(g)
>>> rbbc.showRankingByBestChoosing()
Ranking by recursively choosing
1st Best Choice ['a06']
   2nd Best Choice ['a02', 'a05']
   3rd Best Choice ['a07']
   4th Best Choice ['a01']
   5th Best Choice ['a03', 'a04']
```

Ranking by recursively rejecting:

Notice the contrasted ranks of action a_5 (second best as well as second last) and action a_1 (fourth best as well as fourth last); indicating a lack of comparability, which becomes apparent in the disjunctive epistemic fusion R of both weak orderings.

5/29

Content O	Illustration ○○ ○○ ○○ ○	The setting 0 00000 0000	Ranking-by-choosing 0 0 0 000 000	Bibliography O	Content O	Illustration OO OOO •	The setting 0 00000 0000	Ranking-by-choosing 0 0 0 000 000	Bibliography O

Epistemic fusion of best-choosing and worst-rejecting

```
>>> fdg = FusionDigraph(rbbc,rblc); fdg.recodeValuation(-12,12)
```

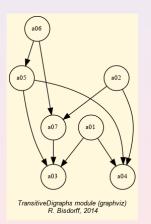
>>> ranking = fdg.computeCopelandRanking()

Table: r-valued characteristics of the fusion digraph fdg

$r(x \succ y)$	a ₆	a ₂	a_1	a ₅	a ₇	a ₄	<i>a</i> ₃
a ₂	0	0	0	0	+2	+12	+2
a_6	0	0	0	0	+2	+12	+6
a_1	0	0	0	0	0	+12	+8
<i>a</i> ₅	-6	0	0		0	0	+12
a ₇	-2	-2		0	0	0	+2
<i>a</i> ₄	-12	-12	-12	-8	0	0	0
a_3	-2	-6	-8	-12	-2	0	0

Weak ranking by fusing best-choosing and worst-rejecting

```
>>> from transitiveDigraphs import\
RankingByChoosingDigraph
>>> rbc = RankingByChoosingDigraph(g)
>>> rbc.showRankingByChoosing()
Ranking by Choosing and Rejecting
1st ranked ['a01', 'a02', 'a06'] (0.43)
2nd ranked ['a05','a7'] (1.00)
2nd last ranked ['a5','a07'] (1.00)
1st last ranked ['a03', 'a04'] (0.62)
>>> rbc.exportGraphViz(fileName='rbc',\
direction='best')
*- exporting a dot file for GraphViz tools -*
Exporting to rbc.dot
dot -Grankdir=TB -Tpng rbc.dot -o rbc.png
```



1. Illustratio

Sample outranking relation Ranking-by-choosing Partial weak ranking result

2. The setting

Weakly complete relations
The Rubis choice procedure
Properties

3. Ranking-by-choosing

Algorithm
Properties
Empirical Valida

Bipolar characteristic function r - I

- $X = \{x, y, z, ...\}$ is a finite set of m decision alternatives;
- We define a binary relation R on X with the help of a bipolar characteristic function r taking values in the rational interval [-1.0; 1.0].
- **Bipolar semantics**: For any pair $(x, y) \in X^2$,
 - 1. r(x R y) = +1.0 means x R y valid for sure,
 - 2. r(x R y) > 0.0 means x R y more or less valid,
 - 3. r(x R y) = 0.0 means both x R y and x / R y indeterminate,
 - 4. r(x R y) < 0.0 means x R y more or less valid,
 - 5. r(x R y) = -1.0 means x $\Re y$ valid for sure.

9/29

Conten

Illustration

Ranking-by-choosing
0
0
0
000
000

Bibliography 0

Content

Illustration 00 000 0 The setting

OOOOO

OOO

Ranking-by-choosing

Bibliography 0

Bipolar characteristic function r - II

Boolean operations:

Let ϕ and ψ be two relational propositions.

- 1. negation: $r(\neg \phi) := -r(\phi)$.
- 2. disjunction: $r(\phi \lor \psi) := \max(r(\phi), r(\psi)),$
- 3. conjunction: $r(\phi \wedge \psi) := \min(r(\phi), r(\psi))$.
- 4. epistemic disjunction:

$$r(\phi \otimes \psi) := egin{cases} r(\phi \lor \psi) \text{ when } (r(\phi) \geqslant 0.0) \land (r(\psi) \geqslant 0.0) \\ r(\phi \land \psi) \text{ when } (r(\phi) \leqslant 0.0) \land (r(\psi) \leqslant 0.0) \\ 0.0 \text{ otherwise} \end{cases}$$

Weakly complete binary relations

Let R be an r-valued binary relation defined on X.

Definition

We say that R is weakly complete on X if, for all $(x, y) \in X^2$, either $r(x R y) \ge 0.0$ or $r(y R x) \ge 0.0$.

Examples

- 1. Marginal semi-orders (orders with discrimination thresholds) observed on each criterion,
- 2. Global weighted "at least as performing as" relations,
- 3. Outranking relations (polarized with considerable performance differences),
- 4. Fusion of (vague) weak or linear rankings,
- 5. Ranking-by-choosing results.

Universal properties

Let \mathcal{R} denote the set of all possible weakly complete relations definable on X.

Property (*R*-internal operations)

- 1. The convex combination of any finite set of such weakly complete relations remains a weakly complete relation.
- 2. The disjunctive combination of any finite set of such weakly complete relations remains a weakly complete relation.
- 3. The epistemic-disjunctive (resp. -conjunctive) combination of any finite set of such weakly complete relations remains a weakly complete relation.

Examples: Concordance of linear-, weak- or semi-orders, bipolar-valued outranking relations.

Useful properties

Definition (Coduality Principle)

We say that a binary relation $\succeq \in \mathcal{R}$ verifies the *coduality principle* when the converse of its negation equals its asymetric part :

$$\not z^{-1} \equiv \not z.$$

Let \mathcal{R}^{cd} denote the set of all possible relations $R \in \mathcal{R}$ that verify the coduality principle.

Property

The convex and epistemic-disjunctive (resp. -conjunctive) combinations of a finite set of relations in \mathbb{R}^{cd} verify again the coduality principle.

Examples: Marginal linear and weak rankings or orderings; orders with thresholds; bipolar-valued outranking relations; all, verify the coduality principle.

14 / 29

13 / 29

Content O	Illustration OO OOO	The setting	Ranking-by-choosing 0 0 000	Bibliography 0	Content O	Illustration 00 000	The setting	Ranking-by-choosing 0 0 0000	Bibliography 0
		00	0000				00	0000	

Pragmatic principles of the Rubis choice

\mathcal{P}_1 : Elimination for well motivated reasons:

Each eliminated alternative has to be outranked by (resp. is outranking) at least one alternative in the Rubis choice (RC).

\mathcal{P}_2 : Minimal size:

The RC must be as limited in cardinality as possible.

\mathcal{P}_3 : Stable and efficient:

The RC must not contain a self-contained sub-RC.

\mathcal{P}_4 : Effectively better (resp. worse):

The RC must not be ambiguous in the sense that it is not both a best choice as well as a worst choice recommendation.

P₅: Maximally significant:

The RC is, of all potential best (resp. worst) choices, the one that is most significantly supported by the marginal "at least as good as" relations.

Qualifications of a choice in X

Let \succeq be an *r*-valued outranking relation defined on X and let Y be a non empty subset of X, called a choice in X.

- Y is called outranking (resp. outranked) if for all non retained alternative x there exists an alternative y retained such that $r(y \geq x) > 0.0$ (resp. $r(x \geq y) > 0.0$).
- Y is called independent if for all $x \neq y$ in Y, we observe $r(x \succsim y) < 0.0$.
- Y is called weakly independent if for all $x \neq y$ in Y, we observe $r(x \succsim y) \leq 0.0$.
- Y is an outranking kernel (resp. outranked kernel) iff Y is an outranking (resp. outranked) and independent choice.
- Y is an outranking prekernel (resp. outranked prekernel) iff Y is an outranking (resp. outranked) and weakly independent choice.

Translating the pragmatic Rubis principles in terms of choice qualifications

- \mathcal{P}_1 : Elimination for well motivated reasons. The RC is an outranking choice (resp. outranked choice).
- \mathcal{P}_{2+3} : Minimal and stable choice. The RC is a prekernel.
 - P4: Effectivity.
 The RC is a choice which is strictly more outranking than outranked (resp. strictly more outranked than outranking).
 - P₅: Maximal significance. The RC is the most determined one in the set of potential outranking (resp. outranked) prekernels observed in a given r-valued strict outranking relation.

Properties of the Rubis choice

Property (decisiveness)

Every r-valued strict outranking relation without chordless odd circuits admits at least one outranking and one outranked prekernel.

Definition

Let O and O' be two r-valued outranking relations defined on X.

- 1. We say that O' upgrades action $x \in X$, denoted $O^{x \uparrow}$, if $r(x O' y) \ge r(x O y)$, and $r(y O' x) \le r(y O x)$, and r(y O' z) = r(y O z) for all $y, z \in X \{x\}$.
- 2. We say that O' downgrades action $x \in X$, denoted $O^{x\downarrow}$, if $r(y O' x) \ge r(y O x)$, and $r(x O' y) \le r(x O y)$, and r(y O' z) = r(y O z) for all $y, z \in X \{x\}$.

18/29

17 / 29

Properties of the Rubis choice

Let A be a subset of X. Let $RBC(O_{|A})$ (resp. $RBC(O'_{|A})$) be the RUBIS best choice wrt to O (resp. O') restricted to A; and, let $RWC(O_{|A})$ (resp. $RWC(O'_{|A})$) be the RUBIS worst choice wrt to O (resp. O') restricted to A.

Property

- 1. $O_{|A} = O'_{|A} \Rightarrow RBC(O_{|A}) = RBC(O'_{|A})$ (RBC local),
- 2. $O_{|A} = O'_{|A} \Rightarrow RWC(O_{|A}) = RWC(O'_{|A})$ (RWC local),
- 3. $x \in RBC(O_{|A}) \Rightarrow x \in RBC(O_{|A}^{x\uparrow})$ (RBC weakly monotonic),
- 4. $x \in RWC(O_{|A}) \Rightarrow x \in RWC(O_{|A}^{x\downarrow})$ (RWC weakly monotonic).

1. Illustration

Sample outranking relation Ranking-by-choosing Partial weak ranking result

The setting

Weakly complete relations
The Rubis choice procedure
Properties

3. Ranking-by-choosing

Algorithm
Properties
Empirical Validation

Ranking-by-Choosing Algorithm

- 1. Let X_1 be the set X of potential decision actions we wish to rank on the basis of a given outranking relation O.
- 2. While the remaining set X_i (i = 1, 2, ...) of decision actions to be ranked is not empty, we extract from X_i the **best** (B_i), respectively **worst** (W_i), RUBIS choice recommendation and set $X_{i+1} = X_i B_i$, respectively $X_{i+1} = X_i W_i$.
- 3. Both independent iterations determine, hence, two usually slightly different opposite weak rankings on X: a ranking by-best-choosing and a ranking by-last-choosing.
- 4. We fuse both weak rankings with the epistemic disjunction operator (\bigcirc) to make apparent a weakly complete ranking relation ≥ 0 on X.

Transitive ≿-closure

Definition

We call a ranking procedure weakly transitive if the ranking procedure renders a (partial) strict ranking \succsim on X from a given r-valued outranking relation \succsim such that for all $x,y,z\in X$: $r(x\succsim y)\geqslant 0$ and $r(y\succsim z)\geqslant 0$ imply $r(x\succsim z)\geqslant 0$.

Property

Both the Rubis ranking-by-best-choosing, as well as the Rubis ranking-by-last-choosing procedures, are weakly transitive ranking procedures.

Corollary

- i) The fusion of the ranking by Rubis best choice and the converse of the ranking by Rubis last choice of a given r-valued outranking relation \succsim is a weakly transitive ranking procedure.
- ii) The Rubis ranking-by-choosing represents a weakly transitive closure of the outranking relation \succeq .

21 / 29

22 / 29

Content Illustration

The setting

Bibliography 0

O

lustration

The setting

Bibliography 0

Weak monotinicity

Definition

We call a ranking procedure weakly monotonic if for all $x, y \in X$: $(x \succsim y) \Rightarrow (x \succsim^{x\uparrow} y)$ and $(y \succsim x) \Rightarrow (y \succsim^{x\downarrow} x)$,

Property

The ranking by Rubis best choice and the ranking by Rubis last choice are, both, weakly monotonic ranking procedures.

Corollary

The ranking-by-choosing, resulting from the fusion of the ranking by Rubis best choice and the converse of the ranking by Rubis last choice, is hence a weakly monotonic procedure.

Condorcet consistency

Definition

We call a ranking procedure Condorcet-consistent if the ranking procedure renders the same linear (resp. weak) ranking \gtrsim on X which is, the case given, modelled by the strict majority cut of the codual of a given \gtrsim relation.

Property

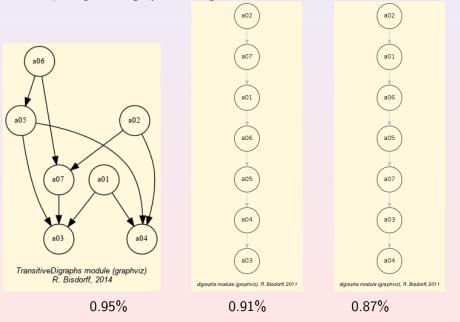
Both the Rubis ranking-by-best-choosing, as well as the Rubis ranking-by-worst-choosing procedures, are Condorcet consistent.

Corollary

The fusion of the ranking by Rubis best choice and the ranking by Rubis worst choice of a given r-valued outranking relation O is, hence, also Condorcet consistent.

Introductory example

Comparing ranking-by-choosing result with Tideman's and Kohler's:



Sample performance tableau

Let $X = \{a_1, ..., a_7\}$ be seven potential decision actions evaluated on three cost criteria (g_1, g_4, g_5) of equi-significance 1/6 and two benefit criteria (g_2, g_3) of equi-signifiance 1/4. The given performance tableau is shown below.

Objectives		Costs		Benefits		
Criteria	$ g_1(\downarrow)$	$g_4(\downarrow)$	$g_5(\downarrow)$	$g_2(\uparrow)$	g ₃ (↑)	
weights×12	2.0	2.0	2.0	3.0	3.0	
indifference	3.41	4.91	-	-	2.32	
preference	6.31	8.31	-	-	5.06	
veto	60.17	67.75	-	-	48.24	
a ₁	22.49	36.84	7	8	43.44	
a 2	16.18	19.21	2	8	19.35	
a 3	29.41	54.43	3	4	33.37	
a 4	82.66	86.96	8	6	48.50	
a_5	47.77	82.27	7	7	81.61	
a 6	32.50	16.56	6	8	34.06	
a_7	35.91	27.52	2	1	50.82	

26 / 29

Content

OO OOO

The setting

O

Content

Illustration 00 000 The setting

Ranking-by-choosing

Bibliograph 0

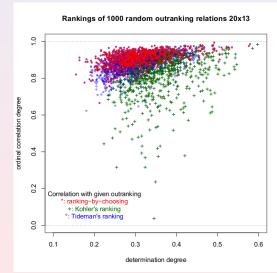
Quality of ranking result

Comparing rankings of a sample of 1000 random *r*-valued outranking relations defined on 20 actions and evaluated on 13 criteria obtained with Rubis ranking-by-choosing, Kohler's, and Tideman's (ranked pairs) procedure.

Mean extended Kendall τ correlations with r-valued outranking relation:

Ranking-by-choosing: +.906

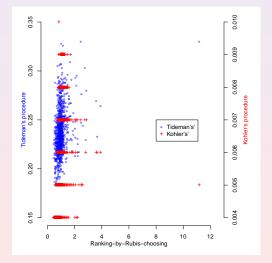
Tideman's ranking: +.875Kohler's ranking: +.835



Scalability of ranking procedures

Ranking execution times (in sec.) for 1000 random 20x13 outrankings:

- Kohler's procedure on the right y-axis (less than 1/100 sec.),
- Tideman's procedure on the left y-axis (less than 1/3 sec.),
- the Rubis
 ranking-by-choosing
 procedure on the x-axis
 (mostly less than 2
 sec.). But, heavy right
 tail (up to 11 sec.!).



27 / 29 28 / 29

Bibliography

- [1] D. Bouyssou, *Monotonicity of 'ranking by choosing'*; *A progress report*. Social Choice Welfare (2004) 23: 249-273.
- [2] R. Bisdorff, M. Pirlot and M. Roubens, *Choices and kernels from bipolar valued digraphs*. European Journal of Operational Research, 175 (2006) 155-170.
- [3] R. Bisdorff, P. Meyer and M. Roubens, Rubis: a bipolar-valued outranking method for the choice problem. 4OR, A Quarterly Journal of Operations Research, Springer-Verlag, Volume 6 Number 2 (2008) 143-165.
- [4] R. Bisdorff, On measuring and testing the ordinal correlation between bipolar outranking relations. In Proceedings of DA2PL'2012 From Multiple Criteria Decision Aid to Preference Learning, University of Mons (2012) 91-100.
- [5] R. Bisdorff, *On polarizing outranking relations with large performance differences*. Journal of Multi-Criteria Decision Analysis, Wiley, Number 20 (2013) DOI: 10.1002/mcda.1472 3-12.