
Documentation of the Digraph3 software collection

Tutorials and Advanced Topics
Raymond BISDORFF

Luxembourg, 2020

Last updated : October 20, 2023

This documentation is dedicated to our

late colleague and dear friend

Prof. Marc ROUBENS.

More documents are freely available here

https://digraph3.readthedocs.io/en/latest

A. Tutorials of the Digraph3 Resources

HTML Version

The tutorials in this document describe the practical usage of our Digraph3 Python3
software resources in the field of Algorithmic Decision Theory and more specifically in
outranking basedMultiple Criteria Decision Aid (MCDA). They mainly illustrate prac-
tical tools for a Master Course at the University of Luxembourg. The document contains
first a set of tutorials introducing the main objects available in the Digraph3 collection of
Python3 modules, like digraphs, outranking digraphs, performance tableaux and
voting profiles. Some of the tutorials are decision problem oriented and show how to
compute the potentialwinner(s) of an election, how to build a best choice recommen-
dation, or how to rate or linearly rank with multiple incommensurable performance
criteria. More graph theoretical tutorials follow. One on working with undirected
graphs, followed by a tutorial on how to compute non isomorphic maximal inde-
pendent sets (kernels) in the n-cycle graph. Finally, special tutorials are devoted to
perfect graphs, like split, interval and permutation graphs, and to tree-graphs and forests.

Contents

1 Working with digraphs and outranking digraphs 2
1.1 Working with the Digraph3 software resources 2
1.2 Working with the digraphs module . 10
1.3 Working with the outrankingDigraphs module 24

2 Evaluation and decision methods and tools 32
2.1 Generating random performance tableaux with the randPerfTabs module 32
2.2 How to create a new performance tableau instance 47
2.3 Computing the winner of an election with the votingProfiles module . 59
2.4 Ranking with multiple incommensurable criteria 72
2.5 Computing a first choice recommendation 88
2.6 Rating into relative performance quantiles 102
2.7 Rating with learned performance quantile norms 108
2.8 Sparse bipolar-valued outranking digraphs 120
2.9 HPC ranking with big outranking digraphs 125

3 Evaluation and decision case studies 141
3.1 Alice’s best choice: A selection case study 141
3.2 The best academic Computer Science Depts: a ranking case study 156
3.3 The best students, where do they study? A rating case study 178
3.4 Exercises . 192

4 Moving on to undirected graphs 197
4.1 Working with the graphs module . 197
4.2 Computing the non isomorphic MISs of the 12-cycle graph 209

1

https://digraph3.readthedocs.io/en/latest/index.html

4.3 About split, interval and permutation graphs 214
4.4 On computing fair intergroup pairings 228
4.5 On computing fair intragroup pairings 258
4.6 On tree graphs and graph forests . 270

5 Appendices 279

References 279

1 Working with digraphs and outranking digraphs

1.1 Working with the Digraph3 software resources

� Purpose (page 2)

� Downloading of the Digraph3 resources (page 3)

� Starting a Python3 terminal session (page 3)

� Digraph object structure (page 4)

� Permanent storage (page 5)

� Inspecting a Digraph object (page 6)

� Special Digraph instances (page 9)

Purpose

The basic idea of the Digraph3 Python resources is to make easy python interactive
sessions or write short Python3 scripts for computing all kind of results from a bipolar-
valued digraph or graph. These include such features as maximal independent, maximal
dominant or absorbent choices, rankings, outrankings, linear ordering, etc. Most of the
available computing resources are meant to illustrate a Master Course on Algorithmic
Decision Theory given at the University of Luxembourg in the context of its Master in
Information and Computer Science (MICS).

The Python development of these computing resources offers the advantage of an easy to
write and maintain OOP source code as expected from a performing scripting language
without loosing on efficiency in execution times compared to compiled languages such as
C++ or Java.

2

Downloading of the Digraph3 resources

Using the Digraph3 modules is easy. You only need to have installed on your system the
Python (https://www.python.org/doc/) programming language of version 3.+ (readily
available under Linux and Mac OS).

Several download options (easiest under Linux or Mac OS-X) are given.

1. (Recommended) With a browser access, download and extract the latest distribution
zip archive from

https://github.com/rbisdorff/Digraph3 or, from

https://sourceforge.net/projects/digraph3

2. By using a git client either, cloning from github

...$ git clone https://github.com/rbisdorff/Digraph3

3. Or, from sourceforge.net

...$ git clone https://git.code.sf.net/p/digraph3/code Digraph3

Starting a Python3 terminal session

You may start an interactive Python3 terminal session in the Digraph3 directory.

1 $HOME/.../Digraph3$ python3

2 Python 3.10.0 (default, Oct 21 2021, 10:53:53)

3 [GCC 11.2.0] on linux Type "help", "copyright",

4 "credits" or "license" for more information.

5 >>>

For exploring the classes and methods provided by the Digraph3 modules (see the Refer-
ence manual) enter the Python3 commands following the session prompts marked with
>>> or The lines without the prompt are console output from the Python3 inter-
preter.

Listing 1.1: Generating a random digraph instance

1 >>> from randomDigraphs import RandomDigraph

2 >>> dg = RandomDigraph(order=5,arcProbability=0.5,seed=101)

3 >>> dg

4 *------- Digraph instance description ------*

5 Instance class : RandomDigraph

6 Instance name : randomDigraph

7 Digraph Order : 5

8 Digraph Size : 12

9 Valuation domain : [-1.00; 1.00]

10 Determinateness : 100.000

(continues on next page)

3

https://www.python.org/doc/
https://github.com/rbisdorff/Digraph3
https://sourceforge.net/projects/digraph3
techDoc.html
techDoc.html

(continued from previous page)

11 Attributes : ['actions', 'valuationdomain', 'relation',

12 'order', 'name', 'gamma', 'notGamma',

13 'seed', 'arcProbability',]

In Listing 1.1 we import, for instance, from the randomDigraphs module the
RandomDigraph class in order to generate a random digraph object dg of order 5 - number
of nodes called (decision) actions - and arc probability of 50%. We may directly inspect
the content of python object dg (Line 3).

Note: For convenience of redoing the computations, all python code-blocks
show in the upper right corner a specific copy button which allows to both
copy only code lines, i.e. lines starting with ‘>>>’ or ‘. . . ’, and stripping the
console prompts. The copied code lines may hence be right away pasted into
a Python console session.

Digraph object structure

All Digraph objects contain at least the following attributes (see Listing 1.1 Lines 11-12):

0. A name attribute, holding usually the actual name of the stored instance that was
used to create the instance;

1. A ordered dictionary of digraph nodes called actions (decision alternatives) with
at least a ‘name’ attribute;

2. An order attribute containing the number of graph nodes (length of the actions
dictionary) automatically added by the object constructor;

3. A logical characteristic valuationdomain dictionary with three decimal entries:
the minimum (-1.0, means certainly false), the median (0.0, means missing infor-
mation) and the maximum characteristic value (+1.0, means certainly true);

4. A double dictionary called relation and indexed by an oriented pair of actions
(nodes) and carrying a decimal characteristic value in the range of the previous
valuation domain;

5. Its associated gamma attribute, a dictionary containing the direct successors, re-
spectively predecessors of each action, automatically added by the object construc-
tor;

6. Its associated notGamma attribute, a dictionary containing the actions that are
not direct successors respectively predecessors of each action, automatically added
by the object constructor.

4

Permanent storage

The save() method stores the digraph object dg in a file named ‘tutorialDigraph.py’,

>>> dg.save('tutorialDigraph')

--- Saving digraph in file: <tutorialDigraph.py> ---

with the following content

1 from decimal import Decimal

2 from collections import OrderedDict

3 actions = OrderedDict([

4 ('a1', {'shortName': 'a1', 'name': 'random decision action'}),

5 ('a2', {'shortName': 'a2', 'name': 'random decision action'}),

6 ('a3', {'shortName': 'a3', 'name': 'random decision action'}),

7 ('a4', {'shortName': 'a4', 'name': 'random decision action'}),

8 ('a5', {'shortName': 'a5', 'name': 'random decision action'}),

9])

10 valuationdomain = {'min': Decimal('-1.0'),

11 'med': Decimal('0.0'),

12 'max': Decimal('1.0'),

13 'hasIntegerValuation': True, # repr. format

14 }

15 relation = {

16 'a1': {'a1':Decimal('-1.0'), 'a2':Decimal('-1.0'),

17 'a3':Decimal('1.0'), 'a4':Decimal('-1.0'),

18 'a5':Decimal('-1.0'),},

19 'a2': {'a1':Decimal('1.0'), 'a2':Decimal('-1.0'),

20 'a3':Decimal('-1.0'), 'a4':Decimal('1.0'),

21 'a5':Decimal('1.0'),},

22 'a3': {'a1':Decimal('1.0'), 'a2':Decimal('-1.0'),

23 'a3':Decimal('-1.0'), 'a4':Decimal('1.0'),

24 'a5':Decimal('-1.0'),},

25 'a4': {'a1':Decimal('1.0'), 'a2':Decimal('1.0'),

26 'a3':Decimal('1.0'), 'a4':Decimal('-1.0'),

27 'a5':Decimal('-1.0'),},

28 'a5': {'a1':Decimal('1.0'), 'a2':Decimal('1.0'),

29 'a3':Decimal('1.0'), 'a4':Decimal('-1.0'),

30 'a5':Decimal('-1.0'),},

31 }

5

Inspecting a Digraph object

We may reload (see Listing 1.2) the previously saved digraph object from the file named
‘tutorialDigraph.py’ with the Digraph class constructor and different show methods (see
Listing 1.2 below) reveal us that dg is a crisp, irreflexive and connected digraph of order
five.

Listing 1.2: Random crisp digraph example

1 >>> from digraphs import Digraph

2 >>> dg = Digraph('tutorialDigraph')

3 >>> dg.showShort()

4 *----- show short -------------*

5 Digraph : tutorialDigraph

6 Actions : OrderedDict([

7 ('a1', {'shortName': 'a1', 'name': 'random decision action'}),

8 ('a2', {'shortName': 'a2', 'name': 'random decision action'}),

9 ('a3', {'shortName': 'a3', 'name': 'random decision action'}),

10 ('a4', {'shortName': 'a4', 'name': 'random decision action'}),

11 ('a5', {'shortName': 'a5', 'name': 'random decision action'})

12])

13 Valuation domain : {

14 'min': Decimal('-1.0'),

15 'max': Decimal('1.0'),

16 'med': Decimal('0.0'), 'hasIntegerValuation': True

17 }

18 >>> dg.showRelationTable()

19 * ---- Relation Table -----

20 S | 'a1' 'a2' 'a3' 'a4' 'a5'

21 ------|-------------------------------

22 'a1' | -1 -1 1 -1 -1

23 'a2' | 1 -1 -1 1 1

24 'a3' | 1 -1 -1 1 -1

25 'a4' | 1 1 1 -1 -1

26 'a5' | 1 1 1 -1 -1

27 Valuation domain: [-1;+1]

28 >>> dg.showComponents()

29 *--- Connected Components ---*

30 1: ['a1', 'a2', 'a3', 'a4', 'a5']

31 >>> dg.showNeighborhoods()

32 Neighborhoods:

33 Gamma :

34 'a1': in => {'a2', 'a4', 'a3', 'a5'}, out => {'a3'}

35 'a2': in => {'a5', 'a4'}, out => {'a1', 'a4', 'a5'}

36 'a3': in => {'a1', 'a4', 'a5'}, out => {'a1', 'a4'}

37 'a4': in => {'a2', 'a3'}, out => {'a1', 'a3', 'a2'}

38 'a5': in => {'a2'}, out => {'a1', 'a3', 'a2'}

39 Not Gamma :
(continues on next page)

6

(continued from previous page)

40 'a1': in => set(), out => {'a2', 'a4', 'a5'}

41 'a2': in => {'a1', 'a3'}, out => {'a3'}

42 'a3': in => {'a2'}, out => {'a2', 'a5'}

43 'a4': in => {'a1', 'a5'}, out => {'a5'}

44 'a5': in => {'a1', 'a4', 'a3'}, out => {'a4'}

The exportGraphViz() method generates in the current working directory a ‘tutorialDi-
graph.dot’ file and a ‘tutorialdigraph.png’ picture of the tutorial digraph dg (see Fig.
1.1), if the graphviz (https://graphviz.org/) tools are installed on your system1.

1 >>> dg.exportGraphViz('tutorialDigraph')

2 *---- exporting a dot file do GraphViz tools ---------*

3 Exporting to tutorialDigraph.dot

4 dot -Grankdir=BT -Tpng tutorialDigraph.dot -o tutorialDigraph.png

Fig. 1.1: The tutorial crisp digraph

Further methods are provided for inspecting this Digraph object dg , like the following
showStatistics() method.

Listing 1.3: Inspecting a Digraph object

1 >>> dg.showStatistics()

2 *----- general statistics -------------*

3 for digraph : <tutorialDigraph.py>

4 order : 5 nodes

5 size : 12 arcs

6 # undetermined : 0 arcs

7 determinateness (%) : 100.0

8 arc density : 0.60

(continues on next page)

1 The exportGraphViz method is depending on drawing tools from graphviz (https://graphviz.org/).
On Linux Ubuntu or Debian you may try ‘sudo apt-get install graphviz’ to install them. There are ready
dmg installers for Mac OSX.

7

https://graphviz.org/
https://graphviz.org/

(continued from previous page)

9 double arc density : 0.40

10 single arc density : 0.40

11 absence density : 0.20

12 strict single arc density: 0.40

13 strict absence density : 0.20

14 # components : 1

15 # strong components : 1

16 transitivity degree (%) : 60.0

17 : [0, 1, 2, 3, 4, 5]

18 outdegrees distribution : [0, 1, 1, 3, 0, 0]

19 indegrees distribution : [0, 1, 2, 1, 1, 0]

20 mean outdegree : 2.40

21 mean indegree : 2.40

22 : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

23 symmetric degrees dist. : [0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0]

24 mean symmetric degree : 4.80

25 outdegrees concentration index : 0.1667

26 indegrees concentration index : 0.2333

27 symdegrees concentration index : 0.0333

28 : [0, 1, 2, 3, 4, 'inf']

29 neighbourhood depths distribution: [0, 1, 4, 0, 0, 0]

30 mean neighbourhood depth : 1.80

31 digraph diameter : 2

32 agglomeration distribution :

33 a1 : 58.33

34 a2 : 33.33

35 a3 : 33.33

36 a4 : 50.00

37 a5 : 50.00

38 agglomeration coefficient : 45.00

These show methods usually rely upon corresponding compute meth-
ods, like the computeSize(), the computeDeterminateness() or the
computeTransitivityDegree() method (see Listing 1.3 Line 5,7,16).

1 >>> dg.computeSize()

2 12

3 >>> dg.computeDeterminateness(InPercents=True)

4 Decimal('100.00')

5 >>> dg.computeTransitivityDegree(InPercents=True)

6 Decimal('60.00')

Mind that show methods output their results in the Python console. We provide also
some showHTML methods which output their results in a system browser’s window.

>>> dg.showHTMLRelationMap(relationName='r(x,y)',rankingRule=None)

8

Fig. 1.2: Browsing the relation map of the tutorial digraph

In Fig. 1.2 we find confirmed again that our random digraph instance dg, is indeed a
crisp, i.e. 100% determined digraph instance.

Special Digraph instances

Some constructors for universal digraph instances, like the CompleteDigraph, the
EmptyDigraph or the circular oriented GridDigraph constructor, are readily available
(see Fig. 1.3).

1 >>> from digraphs import GridDigraph

2 >>> grid = GridDigraph(n=5,m=5,hasMedianSplitOrientation=True)

3 >>> grid.exportGraphViz('tutorialGrid')

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to tutorialGrid.dot

6 dot -Grankdir=BT -Tpng TutorialGrid.dot -o tutorialGrid.png

9

Fig. 1.3: The 5x5 grid graph median split oriented

Back to Content Table (page 1)

1.2 Working with the digraphs module

� Random digraphs (page 11)

� Graphviz drawings (page 13)

� Asymmetric and symmetric parts (page 14)

� Border and inner parts (page 15)

� Fusion by epistemic disjunction (page 17)

� Dual, converse and codual digraphs (page 18)

� Symmetric and transitive closures (page 19)

� Strong components (page 21)

10

� CSV storage (page 21)

� Complete, empty and indeterminate digraphs (page 23)

Random digraphs

We are starting this tutorial with generating a uniformly random [-1.0; +1.0]-valued
digraph of order 7, denoted rdg and modelling, for instance, a binary relation (x S y)
defined on the set of nodes of rdg. For this purpose, the Digraph3 collection contains a
randomDigraphs module providing a specific RandomValuationDigraph constructor.

Listing 1.4: Random bipolar-valued digraph instance

1 >>> from randomDigraphs import RandomValuationDigraph

2 >>> rdg = RandomValuationDigraph(order=7)

3 >>> rdg.save('tutRandValDigraph')

4 >>> from digraphs import Digraph

5 >>> rdg = Digraph('tutRandValDigraph')

6 >>> rdg

7 *------- Digraph instance description ------*

8 Instance class : Digraph

9 Instance name : tutRandValDigraph

10 Digraph Order : 7

11 Digraph Size : 22

12 Valuation domain : [-1.00;1.00]

13 Determinateness (%) : 75.24

14 Attributes : ['name', 'actions', 'order',

15 'valuationdomain', 'relation',

16 'gamma', 'notGamma']

With the save() method (see Listing 1.4 Line 3) we may keep a backup version for
future use of rdg which will be stored in a file called tutRandValDigraph.py in the current
working directory. The genuine Digraph class constructor may restore the rdg object
from the stored file (Line 4). We may easily inspect the content of rdg (Lines 5). The
digraph size 22 indicates the number of positively valued arcs. The valuation domain is
uniformly distributed in the interval [−1.0; 1.0] and the mean absolute arc valuation is
(0.7524× 2) − 1.0 = 0.5048 (Line 12) .

All Digraph objects contain at least the list of attributes shown here: a name (string),
a dictionary of actions (digraph nodes), an order (integer) attribute containing the
number of actions, a valuationdomain dictionary, a double dictionary relation repre-
senting the adjency table of the digraph relation, a gamma and a notGamma dictionary
containing the direct neighbourhood of each action.

As mentioned previously, the Digraph class provides some generic show. . . meth-
ods for exploring a given Digraph object, like the showShort(), showAll(),
showRelationTable() and the showNeighborhoods() methods.

11

Listing 1.5: Example of random valuation digraph

1 >>> rdg.showAll()

2 *----- show detail -------------*

3 Digraph : tutRandValDigraph

4 *---- Actions ----*

5 ['1', '2', '3', '4', '5', '6', '7']

6 *---- Characteristic valuation domain ----*

7 {'med': Decimal('0.0'), 'hasIntegerValuation': False,

8 'min': Decimal('-1.0'), 'max': Decimal('1.0')}

9 * ---- Relation Table -----

10 r(xSy) | '1' '2' '3' '4' '5' '6' '7'

11 -------|---

12 '1' | 0.00 -0.48 0.70 0.86 0.30 0.38 0.44

13 '2' | -0.22 0.00 -0.38 0.50 0.80 -0.54 0.02

14 '3' | -0.42 0.08 0.00 0.70 -0.56 0.84 -1.00

15 '4' | 0.44 -0.40 -0.62 0.00 0.04 0.66 0.76

16 '5' | 0.32 -0.48 -0.46 0.64 0.00 -0.22 -0.52

17 '6' | -0.84 0.00 -0.40 -0.96 -0.18 0.00 -0.22

18 '7' | 0.88 0.72 0.82 0.52 -0.84 0.04 0.00

19 *--- Connected Components ---*

20 1: ['1', '2', '3', '4', '5', '6', '7']

21 Neighborhoods:

22 Gamma:

23 '1': in => {'5', '7', '4'}, out => {'5', '7', '6', '3', '4'}

24 '2': in => {'7', '3'}, out => {'5', '7', '4'}

25 '3': in => {'7', '1'}, out => {'6', '2', '4'}

26 '4': in => {'5', '7', '1', '2', '3'}, out => {'5', '7', '1', '6'}

27 '5': in => {'1', '2', '4'}, out => {'1', '4'}

28 '6': in => {'7', '1', '3', '4'}, out => set()

29 '7': in => {'1', '2', '4'}, out => {'1', '2', '3', '4', '6'}

30 Not Gamma:

31 '1': in => {'6', '2', '3'}, out => {'2'}

32 '2': in => {'5', '1', '4'}, out => {'1', '6', '3'}

33 '3': in => {'5', '6', '2', '4'}, out => {'5', '7', '1'}

34 '4': in => {'6'}, out => {'2', '3'}

35 '5': in => {'7', '6', '3'}, out => {'7', '6', '2', '3'}

36 '6': in => {'5', '2'}, out => {'5', '7', '1', '3', '4'}

37 '7': in => {'5', '6', '3'}, out => {'5'}

Warning: Mind that most Digraph class methods will ignore the reflexive links by
considering that they are indeterminate, i.e. the characteristic value 𝑟(𝑥𝑆 𝑥) for all
action x is set to the median, i.e. indeterminate value 0.0 in this case (see Listing 1.5
Lines 12-18 and [BIS-2004a]).

12

Graphviz drawings

We may even get a better insight into the Digraph object rdg by looking at a graphviz
(https://graphviz.org/) drawingPage 7, 1 .

1 >>> rdg.exportGraphViz('tutRandValDigraph')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to tutRandValDigraph.dot

4 dot -Grankdir=BT -Tpng tutRandValDigraph.dot -o tutRandValDigraph.png

Fig. 1.4: The tutorial random valuation digraph

Double links are drawn in bold black with an arrowhead at each end, whereas single
asymmetric links are drawn in black with an arrowhead showing the direction of the link.
Notice the undetermined relational situation (𝑟(6𝑆 2) = 0.00) observed between nodes
‘6’ and ‘2’. The corresponding link is marked in gray with an open arrowhead in the
drawing (see Fig. 1.4).

13

https://graphviz.org/

Asymmetric and symmetric parts

We may now extract both the symmetric as well as the asymmetric part of digraph dg
with the help of two corresponding constructors (see Fig. 1.5).

1 >>> from digraphs import AsymmetricPartialDigraph,

2 ... SymmetricPartialDigraph

3

4 >>> asymDg = AsymmetricPartialDigraph(rdg)

5 >>> asymDg.exportGraphViz()

6 >>> symDg = SymmetricPartialDigraph(rdg)

7 >>> symDg.exportGraphViz()

Fig. 1.5: Asymmetric and symmetric part of the tutorial random valuation digraph

Note: The constructor of the partial objects asymDg and symDg puts to the indeter-
minate characteristic value all not-asymmetric, respectively not-symmetric links between
nodes (see Fig. 1.5).

Here below, for illustration the source code of the relation constructor of the
AsymmetricPartialDigraph class.

1 def _constructRelation(self):

2 actions = self.actions

(continues on next page)

14

(continued from previous page)

3 Min = self.valuationdomain['min']

4 Max = self.valuationdomain['max']

5 Med = self.valuationdomain['med']

6 relationIn = self.relation

7 relationOut = {}

8 for a in actions:

9 relationOut[a] = {}

10 for b in actions:

11 if a != b:

12 if relationIn[a][b] >= Med and relationIn[b][a] <= Med:

13 relationOut[a][b] = relationIn[a][b]

14 elif relationIn[a][b] <= Med and relationIn[b][a] >=␣

→˓Med:

15 relationOut[a][b] = relationIn[a][b]

16 else:

17 relationOut[a][b] = Med

18 else:

19 relationOut[a][b] = Med

20 return relationOut

Border and inner parts

We may also extract the border -the part of a digraph induced by the union of its initial
and terminal prekernels (see tutorial Kernel-Tutorial-label)- as well as, the inner part
-the complement of the border- with the help of two corresponding class constructors:
GraphBorder and GraphInner (see Listing 1.6).

Let us illustrate these parts on a linear ordering obtained from the tutorial random
valuation digraph rdg with the NetFlows ranking rule (page 78) (see Listing 1.6 Line
2-3).

15

Listing 1.6: Border and inner part of a linear order

1 >>> from digraphs import GraphBorder, GraphInner

2 >>> from linearOrders import NetFlowsOrder

3 >>> nf = NetFlowsOrder(rdg)

4 >>> nf.netFlowsOrder

5 ['6', '4', '5', '3', '2', '1', '7']

6 >>> bnf = GraphBorder(nf)

7 >>> bnf.exportGraphViz(worstChoice=['6'],bestChoice=['7'])

8 >>> inf = GraphInner(nf)

9 >>> inf.exportGraphViz(worstChoice=['6'],bestChoice=['7'])

Fig. 1.6: Border and inner part of a linear order oriented by terminal and initial kernels

We may orient the graphviz drawings in Fig. 1.6 with the terminal node 6 (worstChoice
parameter) and initial node 7 (bestChoice parameter), see Listing 1.6 Lines 7 and 9).

Note: The constructor of the partial digraphs bnf and inf (see Listing 1.6 Lines 3 and
6) puts to the indeterminate characteristic value all links not in the border, respectively
not in the inner part (see Fig. 1.7).

Being much denser than a linear order, the actual inner part of our tutorial random
valuation digraph dg is reduced to a single arc between nodes 3 and 4 (see Fig. 1.7).

16

Fig. 1.7: Border and inner part of the tutorial random valuation digraph rdg

Indeed, a complete digraph on the limit has no inner part (privacy!) at all, whereas empty
and indeterminate digraphs admit both, an empty border and an empty inner part.

Fusion by epistemic disjunction

We may recover object rdg from both partial objects asymDg and symDg, or as well
from the border bg and the inner part ig, with a bipolar fusion constructor, also called
epistemic disjunction, available via the FusionDigraph class (see Listing 1.4 Lines 12-
21).

Listing 1.7: Epistemic fusion of partial diagraphs

1 >>> from digraphs import FusionDigraph

2 >>> fusDg = FusionDigraph(asymDg,symDg,operator='o-max')

3 >>> # fusDg = FusionDigraph(bg,ig,operator='o-max')

4 >>> fusDg.showRelationTable()

5 * ---- Relation Table -----

6 r(xSy) | '1' '2' '3' '4' '5' '6' '7'

7 -------|--

8 '1' | 0.00 -0.48 0.70 0.86 0.30 0.38 0.44

9 '2' | -0.22 0.00 -0.38 0.50 0.80 -0.54 0.02

10 '3' | -0.42 0.08 0.00 0.70 -0.56 0.84 -1.00

11 '4' | 0.44 -0.40 -0.62 0.00 0.04 0.66 0.76

12 '5' | 0.32 -0.48 -0.46 0.64 0.00 -0.22 -0.52

13 '6' | -0.84 0.00 -0.40 -0.96 -0.18 0.00 -0.22

14 '7' | 0.88 0.72 0.82 0.52 -0.84 0.04 0.00

The epistemic fusion (page 17) operator o-max (see Listing 1.7 Line 2) works as follows.

17

Let r and r’ characterise two bipolar-valued epistemic situations.

� o-max(r, r’) = max(r, r’) when both r and r’ are more or less valid or indeter-
minate;

� o-max(r, r’) = min(r, r’) when both r and r’ are more or less invalid or indeter-
minate;

� o-max(r, r’) = indeterminate otherwise.

Dual, converse and codual digraphs

We may as readily compute the dual (negated relation14), the converse (transposed
relation) and the codual (transposed and negated relation) of the digraph instance rdg.

1 >>> from digraphs import DualDigraph, ConverseDigraph, CoDualDigraph

2 >>> ddg = DualDigraph(rdg)

3 >>> ddg.showRelationTable()

4 -r(xSy) | '1' '2' '3' '4' '5' '6' '7'

5 --------|--

6 '1 ' | 0.00 0.48 -0.70 -0.86 -0.30 -0.38 -0.44

7 '2' | 0.22 0.00 0.38 -0.50 0.80 0.54 -0.02

8 '3' | 0.42 0.08 0.00 -0.70 0.56 -0.84 1.00

9 '4' | -0.44 0.40 0.62 0.00 -0.04 -0.66 -0.76

10 '5' | -0.32 0.48 0.46 -0.64 0.00 0.22 0.52

11 '6' | 0.84 0.00 0.40 0.96 0.18 0.00 0.22

12 '7' | 0.88 -0.72 -0.82 -0.52 0.84 -0.04 0.00

13 >>> cdg = ConverseDigraph(rdg)

14 >>> cdg.showRelationTable()

15 * ---- Relation Table -----

16 r(ySx) | '1' '2' '3' '4' '5' '6' '7'

17 --------|--

18 '1' | 0.00 -0.22 -0.42 0.44 0.32 -0.84 0.88

19 '2' | -0.48 0.00 0.08 -0.40 -0.48 0.00 0.72

20 '3' | 0.70 -0.38 0.00 -0.62 -0.46 -0.40 0.82

21 '4' | 0.86 0.50 0.70 0.00 0.64 -0.96 0.52

22 '5' | 0.30 0.80 -0.56 0.04 0.00 -0.18 -0.84

23 '6' | 0.38 -0.54 0.84 0.66 -0.22 0.00 0.04

24 '7' | 0.44 0.02 -1.00 0.76 -0.52 -0.22 0.00

25 >>> cddg = CoDualDigraph(rdg)

26 >>> cddg.showRelationTable()

27 * ---- Relation Table -----

28 -r(ySx) | '1' '2' '3' '4' '5' '6' '7'

29 --------|--

30 '1' | 0.00 0.22 0.42 -0.44 -0.32 0.84 -0.88

(continues on next page)

14 Not to be confused with the dual graph of a plane graph g that has a vertex for each face of g. Here
we mean the less than (strict converse) relation corresponding to a greater or equal relation, or the less
than or equal relation corresponding to a (strict) better than relation.

18

(continued from previous page)

31 '2' | 0.48 0.00 -0.08 0.40 0.48 0.00 -0.72

32 '3' | -0.70 0.38 0.00 0.62 0.46 0.40 -0.82

33 '4' | -0.86 -0.50 -0.70 0.00 -0.64 0.96 -0.52

34 '5' | -0.30 -0.80 0.56 -0.04 0.00 0.18 0.84

35 '6' | -0.38 0.54 -0.84 -0.66 0.22 0.00 -0.04

36 '7' | -0.44 -0.02 1.00 -0.76 0.52 0.22 0.00

Computing the dual, respectively the converse, may also be done with prefixing the
__neg__ (-) or the __invert__ (~) operator. The codual of a Digraph object may,
hence, as well be computed with a composition (in either order) of both operations.

Listing 1.8: Computing the dual, the converse and the
codual of a digraph

1 >>> ddg = -rdg # dual of rdg

2 >>> cdg = ~rdg # converse of rdg

3 >>> cddg = ~(-rdg) # = -(~(rdg) codual of rdg

4 >>> (-(~rdg)).showRelationTable()

5 * ---- Relation Table -----

6 -r(ySx) | '1' '2' '3' '4' '5' '6' '7'

7 --------|--

8 '1' | 0.00 0.22 0.42 -0.44 -0.32 0.84 -0.88

9 '2' | 0.48 0.00 -0.08 0.40 0.48 0.00 -0.72

10 '3' | -0.70 0.38 0.00 0.62 0.46 0.40 -0.82

11 '4' | -0.86 -0.50 -0.70 0.00 -0.64 0.96 -0.52

12 '5' | -0.30 -0.80 0.56 -0.04 0.00 0.18 0.84

13 '6' | -0.38 0.54 -0.84 -0.66 0.22 0.00 -0.04

14 '7' | -0.44 -0.02 1.00 -0.76 0.52 0.22 0.00

Symmetric and transitive closures

Symmetric and transitive closures, by default in-site constructors, are also available (see
Fig. 1.8). Note that it is a good idea, before going ahead with these in-site operations,
who irreversibly modify the original rdg object, to previously make a backup version of
rdg. The simplest storage method, always provided by the generic save(), writes out in
a named file the python content of the Digraph object in string representation.

19

Listing 1.9: Symmetric and transitive in-site closures

1 >>> rdg.save('tutRandValDigraph')

2 >>> rdg.closeSymmetric(InSite=True)

3 >>> rdg.closeTransitive(InSite=True)

4 >>> rdg.exportGraphViz('strongComponents')

Fig. 1.8: Symmetric and transitive in-site closures

The closeSymmetric() method (see Listing 1.9 Line 2), of complexity 𝒪(𝑛2) where n
denotes the digraph’s order, changes, on the one hand, all single pairwise links it may
detect into double links by operating a disjunction of the pairwise relations. On the
other hand, the closeTransitive() method (see Listing 1.9 Line 3), implements the
Roy-Warshall transitive closure algorithm of complexity 𝒪(𝑛3). (17)

Note: The same closeTransitive()method with a Reverse = True flag may be readily
used for eliminating all transitive arcs from a transitive digraph instance. We make usage
of this feature when drawing Hasse diagrams of TransitiveDigraph objects.

17 Roy, B. Transitivité et connexité. C. R. Acad. Sci. Paris 249, 216-218, 1959. Warshall, S. A
Theorem on Boolean Matrices. J. ACM 9, 11-12, 1962.

20

Strong components

As the original digraph rdg was connected (see above the result of the showShort() com-
mand), both the symmetric and the transitive closures operated together, will necessarily
produce a single strong component, i.e. a complete digraph. We may sometimes wish
to collapse all strong components in a given digraph and construct the so collapsed di-
graph. Using the StrongComponentsCollapsedDigraph constructor here will render a
single hyper-node gathering all the original nodes (see Line 7 below).

1 >>> from digraphs import StrongComponentsCollapsedDigraph

2 >>> sc = StrongComponentsCollapsedDigraph(dg)

3 >>> sc.showAll()

4 *----- show detail -----*

5 Digraph : tutRandValDigraph_Scc

6 *---- Actions ----*

7 ['_7_1_2_6_5_3_4_']

8 * ---- Relation Table -----

9 S | 'Scc_1'

10 -------|---------

11 'Scc_1' | 0.00

12 short content

13 Scc_1 _7_1_2_6_5_3_4_

14 Neighborhoods:

15 Gamma :

16 'frozenset({'7', '1', '2', '6', '5', '3', '4'})': in => set(), out =>␣

→˓set()

17 Not Gamma :

18 'frozenset({'7', '1', '2', '6', '5', '3', '4'})': in => set(), out =>␣

→˓set()

CSV storage

Sometimes it is required to exchange the graph valuation data in CSV format with a
statistical package like R (https://www.r-project.org/). For this purpose it is possible to
export the digraph data into a CSV file. The valuation domain is hereby normalized by
default to the range [-1,1] and the diagonal put by default to the minimal value -1.

1 >>> rdg = Digraph('tutRandValDigraph')

2 >>> rdg.saveCSV('tutRandValDigraph')

3 # content of file tutRandValDigraph.csv

4 "d","1","2","3","4","5","6","7"

5 "1",-1.0,0.48,-0.7,-0.86,-0.3,-0.38,-0.44

6 "2",0.22,-1.0,0.38,-0.5,-0.8,0.54,-0.02

7 "3",0.42,-0.08,-1.0,-0.7,0.56,-0.84,1.0

8 "4",-0.44,0.4,0.62,-1.0,-0.04,-0.66,-0.76

9 "5",-0.32,0.48,0.46,-0.64,-1.0,0.22,0.52

(continues on next page)

21

https://www.r-project.org/

(continued from previous page)

10 "6",0.84,0.0,0.4,0.96,0.18,-1.0,0.22

11 "7",-0.88,-0.72,-0.82,-0.52,0.84,-0.04,-1.0

It is possible to reload a Digraph instance from its previously saved CSV file content.

1 >>> from digraphs import CSVDigraph

2 >>> rdgcsv = CSVDigraph('tutRandValDigraph')

3 >>> rdgcsv.showRelationTable(ReflexiveTerms=False)

4 * ---- Relation Table -----

5 r(xSy) | '1' '2' '3' '4' '5' '6' '7'

6 -------|--

7 '1' | - -0.48 0.70 0.86 0.30 0.38 0.44

8 '2' | -0.22 - -0.38 0.50 0.80 -0.54 0.02

9 '3' | -0.42 0.08 - 0.70 -0.56 0.84 -1.00

10 '4' | 0.44 -0.40 -0.62 - 0.04 0.66 0.76

11 '5' | 0.32 -0.48 -0.46 0.64 - -0.22 -0.52

12 '6' | -0.84 0.00 -0.40 -0.96 -0.18 - -0.22

13 '7' | 0.88 0.72 0.82 0.52 -0.84 0.04 -

It is as well possible to show a colored version of the valued relation table in a system
browser window tab (see Fig. 1.9).

1 >>> rdgcsv.showHTMLRelationTable(tableTitle="Tutorial random digraph")

Fig. 1.9: The valued relation table shown in a browser window

Positive arcs are shown in green and negative arcs in red. Indeterminate -zero-valued-
links, like the reflexive diagonal ones or the link between node 6 and node 2, are shown
in gray.

22

Complete, empty and indeterminate digraphs

Let us finally mention some special universal classes of digraphs that are readily avail-
able in the digraphs module, like the CompleteDigraph, the EmptyDigraph and the
IndeterminateDigraph classes, which put all characteristic values respectively to the
maximum, the minimum or the median indeterminate characteristic value.

Listing 1.10: Complete, empty and indeterminate di-
graphs

1 >>> from digraphs import CompleteDigraph,EmptyDigraph,

2 ... IndeterminateDigraph

3

4 >>> e = EmptyDigraph(order=5)

5 >>> e.showRelationTable()

6 * ---- Relation Table -----

7 S | '1' '2' '3' '4' '5'

8 ---- -|-----------------------------------

9 '1' | -1.00 -1.00 -1.00 -1.00 -1.00

10 '2' | -1.00 -1.00 -1.00 -1.00 -1.00

11 '3' | -1.00 -1.00 -1.00 -1.00 -1.00

12 '4' | -1.00 -1.00 -1.00 -1.00 -1.00

13 '5' | -1.00 -1.00 -1.00 -1.00 -1.00

14 >>> e.showNeighborhoods()

15 Neighborhoods:

16 Gamma :

17 '1': in => set(), out => set()

18 '2': in => set(), out => set()

19 '5': in => set(), out => set()

20 '3': in => set(), out => set()

21 '4': in => set(), out => set()

22 Not Gamma :

23 '1': in => {'2', '4', '5', '3'}, out => {'2', '4', '5', '3'}

24 '2': in => {'1', '4', '5', '3'}, out => {'1', '4', '5', '3'}

25 '5': in => {'1', '2', '4', '3'}, out => {'1', '2', '4', '3'}

26 '3': in => {'1', '2', '4', '5'}, out => {'1', '2', '4', '5'}

27 '4': in => {'1', '2', '5', '3'}, out => {'1', '2', '5', '3'}

28 >>> i = IndeterminateDigraph()

29 * ---- Relation Table -----

30 S | '1' '2' '3' '4' '5'

31 ------|------------------------------

32 '1' | 0.00 0.00 0.00 0.00 0.00

33 '2' | 0.00 0.00 0.00 0.00 0.00

34 '3' | 0.00 0.00 0.00 0.00 0.00

35 '4' | 0.00 0.00 0.00 0.00 0.00

36 '5' | 0.00 0.00 0.00 0.00 0.00

37 >>> i.showNeighborhoods()

38 Neighborhoods:
(continues on next page)

23

(continued from previous page)

39 Gamma :

40 '1': in => set(), out => set()

41 '2': in => set(), out => set()

42 '5': in => set(), out => set()

43 '3': in => set(), out => set()

44 '4': in => set(), out => set()

45 Not Gamma :

46 '1': in => set(), out => set()

47 '2': in => set(), out => set()

48 '5': in => set(), out => set()

49 '3': in => set(), out => set()

50 '4': in => set(), out => set()

Note: Mind the subtle difference between the neighborhoods of an empty and the
neighborhoods of an indeterminate digraph instance. In the first kind, the neighbor-
hoods are known to be completely empty (see Listing 1.10 Lines 22-27) whereas, in the
latter, nothing is known about the actual neighborhoods of the nodes (see Listing 1.10
Lines 45-50). These two cases illustrate why in the case of bipolar-valued digraphs, we
may need both a gamma and a notGamma attribute.

Back to Content Table (page 1)

1.3 Working with the outrankingDigraphs module

“The rule for the combination of independent concurrent arguments takes a
very simple form when expressed in terms of the intensity of belief . . . It
is this: Take the sum of all the feelings of belief which would be produced
separately by all the arguments pro, subtract from that the similar sum for
arguments con, and the remainder is the feeling of belief which ought to have
the whole. This is a proceeding which men often resort to, under the name of
balancing reasons.”

—C.S. Peirce, The probability of induction (1878)

� Outranking digraph model (page 25)

� The bipolar-valued outranking digraph (page 27)

� Pairwise comparisons (page 28)

� Recoding the digraph valuation (page 29)

� The strict outranking digraph (page 30)

24

Outranking digraph model

In this Digraph3 module, the BipolarOutrankingDigraph class from the
outrankingDigraphs module provides our standard outranking digraph con-
structor. Such an instance represents a hybrid object of both, the PerformanceTableau
type and the OutrankingDigraph type. A given object consists hence in:

1. an ordered dictionary of decision actions describing the potential decision actions
or alternatives with ‘name’ and ‘comment’ attributes,

2. a possibly empty ordered dictionary of decision objectives with ‘name’ and ‘com-
ment attributes, describing the multiple preference dimensions involved in the de-
cision problem,

3. a dictionary of performance criteria describing preferentially independent and non-
redundant decimal-valued functions used for measuring the performance of each
potential decision action with respect to a decision objective,

4. a double dictionary evaluation gathering performance grades for each decision
action or alternative on each criterion function.

5. the digraph valuationdomain, a dictionary with three entries: the minimum (-1.0,
certainly outranked), the median (0.0, indeterminate) and the maximum charac-
teristic value (+1.0, certainly outranking),

6. the outranking relation : a double dictionary defined on the Cartesian product of
the set of decision alternatives capturing the credibility of the pairwise outranking
situation computed on the basis of the performance differences observed between
couples of decision alternatives on the given family if criteria functions.

Let us construct, for instance, a random bipolar-valued outranking digraph with seven de-
cision actions denotes a1, a2, . . . , a7. We need therefore to first generate a corresponding
random performance tableaux (see below).

1 >>> from outrankingDigraphs import *

2 >>> pt = RandomPerformanceTableau(numberOfActions=7,

3 ... seed=100)

4

5 >>> pt

6 *------- PerformanceTableau instance description ------*

7 Instance class : RandomPerformanceTableau

8 Seed : 100

9 Instance name : randomperftab

10 # Actions : 7

11 # Criteria : 7

12 NaN proportion (%) : 6.1

13 >>> pt.showActions()

14 *----- show digraphs actions --------------*

15 key: a1

16 name: action #1

17 comment: RandomPerformanceTableau() generated.

(continues on next page)

25

(continued from previous page)

18 key: a2

19 name: action #2

20 comment: RandomPerformanceTableau() generated.

21 ...

22 ...

23 key: a7

24 name: action #7

25 comment: RandomPerformanceTableau() generated.

In this example we consider furthermore a family of seven equisignificant cardinal
criteria functions g1, g2, . . . , g7, measuring the performance of each alternative on a
rational scale from 0.0 (worst) to 100.00 (best). In order to capture the grading pro-
cedure’s potential uncertainty and imprecision, each criterion function g1 to g7 admits
three performance discrimination thresholds of 2.5, 5.0 and 80 pts for warranting
respectively any indifference, preference or considerable performance difference situation.

1 >>> pt.showCriteria()

2 *---- criteria -----*

3 g1 'RandomPerformanceTableau() instance'

4 Scale = [0.0, 100.0]

5 Weight = 1.0

6 Threshold ind : 2.50 + 0.00x ; percentile: 4.76

7 Threshold pref : 5.00 + 0.00x ; percentile: 9.52

8 Threshold veto : 80.00 + 0.00x ; percentile: 95.24

9 g2 'RandomPerformanceTableau() instance'

10 Scale = [0.0, 100.0]

11 Weight = 1.0

12 Threshold ind : 2.50 + 0.00x ; percentile: 6.67

13 Threshold pref : 5.00 + 0.00x ; percentile: 6.67

14 Threshold veto : 80.00 + 0.00x ; percentile: 100.00

15 ...

16 ...

17 g7 'RandomPerformanceTableau() instance'

18 Scale = [0.0, 100.0]

19 Weight = 1.0

20 Threshold ind : 2.50 + 0.00x ; percentile: 0.00

21 Threshold pref : 5.00 + 0.00x ; percentile: 4.76

22 Threshold veto : 80.00 + 0.00x ; percentile: 100.00

On criteria function g1 (see Lines 6-8 above) we observe, for instance, about 5% of
indifference, about 90% of preference and about 5% of considerable performance
difference situations. The individual performance evaluation of all decision alternative
on each criterion are gathered in a performance tableau.

1 >>> pt.showPerformanceTableau()

2 *---- performance tableau -----*

3 criteria | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'
(continues on next page)

26

(continued from previous page)

4 ---------|--

5 'g1' | 15.2 44.5 57.9 58.0 24.2 29.1 96.6

6 'g2' | 82.3 43.9 NA 35.8 29.1 34.8 62.2

7 'g3' | 44.2 19.1 27.7 41.5 22.4 21.5 56.9

8 'g4' | 46.4 16.2 21.5 51.2 77.0 39.4 32.1

9 'g5' | 47.7 14.8 79.7 67.5 NA 90.7 80.2

10 'g6' | 69.6 45.5 22.0 33.8 31.8 NA 48.8

11 'g7' | 82.9 41.7 12.8 21.9 75.7 15.4 6.0

It is noteworthy to mention the three missing data (NA) cases: action a3 is missing,
for instance, a grade on criterion g2 (see Line 6 above).

The bipolar-valued outranking digraph

Given the previous random performance tableau pt, the BipolarOutrankingDigraph

constructor computes the corresponding bipolar-valued outranking digraph.

Listing 1.11: Example of random bipolar-valued outrank-
ing digraph

1 >>> odg = BipolarOutrankingDigraph(pt)

2 >>> odg

3 *------- Object instance description ------*

4 Instance class : BipolarOutrankingDigraph

5 Instance name : rel_randomperftab

6 # Actions : 7

7 # Criteria : 7

8 Size : 20

9 Determinateness (%) : 63.27

10 Valuation domain : [-1.00;1.00]

11 Attributes : [

12 'name', 'actions',

13 'criteria', 'evaluation', 'NA',

14 'valuationdomain', 'relation',

15 'order', 'gamma', 'notGamma', ...

16]

The resulting digraph contains 20 positive (valid) outranking realtions. And, the mean
majority criteria significance support of all the pairwise outranking situations is 63.3%
(see Listing 1.11 Lines 8-9). We may inspect the complete [-1.0,+1.0]-valued adjacency
table as follows.

1 >>> odg.showRelationTable()

2 * ---- Relation Table -----

3 r(x,y)| 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

4 ------|---

(continues on next page)

27

(continued from previous page)

5 'a1' | +1.00 +0.71 +0.29 +0.29 +0.29 +0.29 +0.00

6 'a2' | -0.71 +1.00 -0.29 -0.14 +0.14 +0.29 -0.57

7 'a3' | -0.29 +0.29 +1.00 -0.29 -0.14 +0.00 -0.29

8 'a4' | +0.00 +0.14 +0.57 +1.00 +0.29 +0.57 -0.43

9 'a5' | -0.29 +0.00 +0.14 +0.00 +1.00 +0.29 -0.29

10 'a6' | -0.29 +0.00 +0.14 -0.29 +0.14 +1.00 +0.00

11 'a7' | +0.00 +0.71 +0.57 +0.43 +0.29 +0.00 +1.00

12 Valuation domain: [-1.0; 1.0]

Considering the given performance tableau pt, the BipolarOutrankingDigraph class
constructor computes the characteristic value 𝑟(𝑥, 𝑦) of a pairwise outranking rela-
tion “𝑥 ≿ 𝑦” (see [BIS-2013], [ADT-L7]) in a default normalised valuation domain
[-1.0,+1.0] with the median value 0.0 acting as indeterminate characteristic value. The
semantics of 𝑟(𝑥, 𝑦) are the following.

1. When 𝑟(𝑥, 𝑦) > 0.0, it is more True than False that x outranks y, i.e. alternative
x is at least as well performing than alternative y on a weighted majority of criteria
and there is no considerable negative performance difference observed in disfavour
of x,

2. When 𝑟(𝑥, 𝑦) < 0.0, it is more False than True that x outranks y, i.e. alternative x
is not at least as well performing on a weighted majority of criteria than alternative
y and there is no considerable positive performance difference observed in favour
of x,

3. When 𝑟(𝑥, 𝑦) = 0.0, it is indeterminate whether x outranks y or not.

Pairwise comparisons

From above given semantics, we may consider (see Line 5 above) that a1 outranks a2
(𝑟(𝑎1, 𝑎2) > 0.0), but not a7 (𝑟(𝑎1, 𝑎7) = 0.0). In order to comprehend the characteristic
values shown in the relation table above, we may furthermore inspect the details of the
pairwise multiple criteria comparison between alternatives a1 and a2.

1 >>> odg.showPairwiseComparison('a1','a2')

2 *------------ pairwise comparison ----*

3 Comparing actions : (a1, a2)

4 crit. wght. g(x) g(y) diff | ind pref r()

5 ------------------------------- --------------------

6 g1 1.00 15.17 44.51 -29.34 | 2.50 5.00 -1.00

7 g2 1.00 82.29 43.90 +38.39 | 2.50 5.00 +1.00

8 g3 1.00 44.23 19.10 +25.13 | 2.50 5.00 +1.00

9 g4 1.00 46.37 16.22 +30.15 | 2.50 5.00 +1.00

10 g5 1.00 47.67 14.81 +32.86 | 2.50 5.00 +1.00

11 g6 1.00 69.62 45.49 +24.13 | 2.50 5.00 +1.00

12 g7 1.00 82.88 41.66 +41.22 | 2.50 5.00 +1.00

(continues on next page)

28

(continued from previous page)

13 --

14 Valuation in range: -7.00 to +7.00; r(x,y): +5/7 = +0.71

The outranking characteristic value 𝑟(𝑎1 ≿ 𝑎2) represents themajority margin resulting
from the difference between the weights of the criteria in favor and the weights of the
criteria in disfavor of the statement that alternative a1 is at least as well performing as
alternative a2. No considerable performance difference being observed above, no veto
or counter-veto situation is triggered in this pairwise comparison. Such a situation is,
however, observed for instance when we pairwise compare the performances of alternatives
a1 and a7.

1 >>> odg.showPairwiseComparison('a1','a7')

2 *------------ pairwise comparison ----*

3 Comparing actions : (a1, a7)

4 crit. wght. g(x) g(y) diff | ind pref r() | v veto

5 ------------------------------- ------------------ -----------

6 g1 1.00 15.17 96.58 -81.41 | 2.50 5.00 -1.00 | 80.00 -1.00

7 g2 1.00 82.29 62.22 +20.07 | 2.50 5.00 +1.00 |

8 g3 1.00 44.23 56.90 -12.67 | 2.50 5.00 -1.00 |

9 g4 1.00 46.37 32.06 +14.31 | 2.50 5.00 +1.00 |

10 g5 1.00 47.67 80.16 -32.49 | 2.50 5.00 -1.00 |

11 g6 1.00 69.62 48.80 +20.82 | 2.50 5.00 +1.00 |

12 g7 1.00 82.88 6.05 +76.83 | 2.50 5.00 +1.00 |

13 --

14 Valuation in range: -7.00 to +7.00; r(x,y)= +1/7 => 0.0

This time, we observe a 57.1% majority of criteria significance [(1/7 + 1)/2 = 0.571] war-
ranting an as well as performing situation. Yet, we also observe a considerable negative
performance difference on criterion g1 (see first row in the relation table above). Both
contradictory facts trigger eventually an indeterminate outranking situation [BIS-2013].

Recoding the digraph valuation

All outranking digraphs, being of root type Digraph, inherit the methods available under
this latter class. The characteristic valuation domain of a digraph may, for instance, be
recoded with the recodeValutaion() method below to the integer range [-7,+7], i.e.
plus or minus the global significance of the family of criteria considered in this example
instance.

1 >>> odg.recodeValuation(-37,+37)

2 >>> odg.valuationdomain['hasIntegerValuation'] = True

3 >>> Digraph.showRelationTable(odg,ReflexiveTerms=False)

4 * ---- Relation Table -----

5 r(x,y) | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7'

6 ---------|--

7 'a1' | 0 5 2 2 2 2 0

(continues on next page)

29

(continued from previous page)

8 'a2' | -5 0 -1 -1 1 2 -4

9 'a3' | -1 2 0 -1 -1 0 -1

10 'a4' | 0 1 4 0 2 4 -3

11 'a5' | -1 0 1 0 0 2 -1

12 'a6' | -1 0 1 -1 1 0 0

13 'a7' | 0 5 4 3 2 0 0

14 Valuation domain: [-7;+7]

Warning: Notice that the reflexive self comparison characteristic 𝑟(𝑥, 𝑥) is set above
by default to the median indeterminate valuation value 0; the reflexive terms of binary
relation being generally ignored in most of the Digraph3 resources.

The strict outranking digraph

From the theory (see [BIS-2013], [ADT-L7]) we know that a bipolar-valued outranking
digraph is weakly complete, i.e. if 𝑟(𝑥, 𝑦) < 0.0 then 𝑟(𝑦, 𝑥) ≥ 0.0 . A bipolar-
valued outranking relation verifies furthermore the coduality principle: the dual (strict
negation -Page 18, 14) of the converse (inverse ~) of the outranking relation corresponds
to its strict outranking part.

We may visualize the codual (strict) outranking digraph with a graphviz drawingPage 7, 1.

1 >>> cdodg = -(~odg)

2 >>> cdodg.exportGraphViz('codualOdg')

3 *---- exporting a dot file for GraphViz tools ---------*

4 Exporting to codualOdg.dot

5 dot -Grankdir=BT -Tpng codualOdg.dot -o codualOdg.png

30

Fig. 1.10: Codual digraph

It becomes readily clear now from the picture above that both alternatives a1 and a7 are
not outranked by any other alternatives. Hence, a1 and a7 appear as weak Condorcet
winner and may be recommended as potential best decision actions in this illustrative
preference modelling exercise.

Many more tools for exploiting bipolar-valued outranking digraphs are available in the
Digraph3 resources (see the technical documentation of the outrankingDigraphs module
and the perfTabs module).

In this tutorial we have constructed a random outranking digraph with the help of a
random performance tableau instance. The next Digraph3 tutorial presents now different
models of random performance tableaux illustrating various types of decision problems.

Back to Content Table (page 1)

31

2 Evaluation and decision methods and tools

2.1 Generating random performance tableaux with the

randPerfTabs module

� Introduction (page 32)

� Random standard performance tableaux (page 33)

� Random Cost-Benefit performance tableaux (page 35)

� Random three objectives performance tableaux (page 39)

� Random academic performance tableaux (page 43)

� Random linearly ranked performance tableaux (page 47)

Introduction

The randomPerfTabs module provides several constructors for generating random perfor-
mance tableaux models of different kind, mainly for the purpose of testing implemented
methods and tools presented and discussed in the Algorithmic Decision Theory course at
the University of Luxembourg. This tutorial concerns the most useful models.

The simplest model, calledRandomPerformanceTableau, generates a set of n decision
actions, a set of m real-valued performance criteria, ranging by default from 0.0 to 100.0,
associated with default discrimination thresholds: 2.5 (ind.), 5.0 (pref.) and 60.0 (veto).
The generated performances are Beta(2.2) distributed on each measurement scale.

One of the most useful models, called RandomCBPerformanceTableau, proposes a
performance tableau involving two decision objectives, named Costs (to be minimized)
respectively Benefits (to be maximized); its purpose being to generate more or less con-
tradictory performances on these two, usually conflicting, objectives. Low costs will
randomly be coupled with low benefits, whereas high costs will randomly be coupled with
high benefits.

Many public policy decision problems involve three often conflicting decision objec-
tives taking into account economical, societal as well as environmental aspects. For
this type of performance tableau model, we provide a specific model, called Ran-
dom3ObjectivesPerformanceTableau.

Deciding which students, based on the grades obtained in a number of examinations,
validate or not their academic studies, is the genuine decision practice of universities
and academies. To thouroughly study these kind of decision problems, we provide
a corresponding performance tableau model, called RandomAcademicPerformanc-
eTableau, which gathers grades obtained by a given number of students in a given
number of weighted courses.

In order to study aggregation of election results (see the tutorial on Computing the winner

32

of an election with the votingProfiles module (page 59)) in the context of bipolar-valued
outranking digraphs, we provide furthermore a specific performance tableau model called
RandomRankPerformanceTableau which provides ranks (linearly ordered perfor-
mances without ties) of a given number of election candidates (decision actions) for a
given number of weighted voters (performance criteria).

Random standard performance tableaux

The RandomPerformanceTableau class, the simplest of the kind, specializes the generic
PerformanceTableau class, and takes the following parameters.

� numberOfActions := nbr of decision actions.

� numberOfCriteria := number performance criteria.

� weightDistribution := ‘random’ (default) | ‘fixed’ | ‘equisignificant’:

If ‘random’, weights are uniformly selected randomly

from the given weight scale;

If ‘fixed’, the weightScale must provided a corresponding weights

distribution;

If ‘equisignificant’, all criterion weights are put to unity.

� weightScale := [Min,Max] (default =(1,numberOfCriteria).

� IntegerWeights := True (default) | False (normalized to proportions of 1.0).

� commonScale := [a,b]; common performance measuring scales (default =
[0.0,100.0])

� commonThresholds := [(q0,q1),(p0,p1),(v0,v1)]; common indifference(q), prefer-
ence (p) and considerable performance difference discrimination thresholds. For
each threshold type x in {q,p,v}, the float x0 value represents a constant percent-
age of the common scale and the float x1 value a proportional value of the actual
performance measure. Default values are [(2.5.0,0.0),(5.0,0.0),(60.0,0,0)].

� commonMode := common random distribution of random performance measure-
ments (default = (‘beta’,None,(2,2))):

(‘uniform’,None,None), uniformly distributed float values on the given
common scales’ range [Min,Max].

(‘normal’,*mu*,*sigma*), truncated Gaussian distribution, by default
mu = (b-a)/2 and sigma = (b-a)/4.

(‘triangular’,*mode*,*repartition*), generalized triangular distribution
with a probability repartition parameter specifying the probability mass
accumulated until the mode value. By default, mode = (b-a)/2 and
repartition = 0.5.

(‘beta’,None,(alpha,beta)), a beta generator with default alpha=2 and
beta=2 parameters.

� valueDigits := <integer>, precision of performance measurements (2 decimal digits
by default).

33

� missingDataProbability := 0 <= float <= 1.0 ; probability of missing performance
evaluation on a criterion for an alternative (default 0.025).

� NA := <Decimal> (default = -999); missing data symbol.

Code example.

Listing 2.1: Generating a random performance tableau

1 >>> from randomPerfTabs import RandomPerformanceTableau

2 >>> t = RandomPerformanceTableau(numberOfActions=21,numberOfCriteria=13,

→˓seed=100)

3 >>> t.actions

4 {'a01': {'comment': 'RandomPerformanceTableau() generated.',

5 'name': 'random decision action'},

6 'a02': { ... },

7 ...

8 }

9 >>> t.criteria

10 {'g01': {'thresholds': {'ind' : (Decimal('10.0'), Decimal('0.0')),

11 'veto': (Decimal('80.0'), Decimal('0.0')),

12 'pref': (Decimal('20.0'), Decimal('0.0'))},

13 'scale': [0.0, 100.0],

14 'weight': Decimal('1'),

15 'name': 'digraphs.RandomPerformanceTableau() instance',

16 'comment': 'Arguments: ; weightDistribution=random;

17 weightScale=(1, 1); commonMode=None'},

18 'g02': { ... },

19 ...

20 }

21 >>> t.evaluation

22 {'g01': {'a01': Decimal('15.17'),

23 'a02': Decimal('44.51'),

24 'a03': Decimal('-999'), # missing evaluation

25 ...

26 },

27 ...

28 }

29 >>> t.showHTMLPerformanceTableau()

34

Fig. 2.1: Browser view on random performance tableau instance

Note: Missing (NA) evaluation are registered in a performance tableau by default as
Decimal(‘-999’) value (see Listing 2.1 Line 24). Best and worst performance on each
criterion are marked in light green, respectively in light red.

Random Cost-Benefit performance tableaux

We provide the RandomCBPerformanceTableau class for generating random Cost versus
Benefit organized performance tableaux following the directives below:

� We distinguish three types of decision actions: cheap, neutral and expensive ones
with an equal proportion of 1/3. We also distinguish two types of weighted cri-
teria: cost criteria to be minimized, and benefit criteria to be maximized ; in the
proportions 1/3 respectively 2/3.

� Random performances on each type of criteria are drawn, either from an ordinal
scale [0;10], or from a cardinal scale [0.0;100.0], following a parametric triangular
law of mode: 30% performance for cheap, 50% for neutral, and 70% performance
for expensive decision actions, with constant probability repartition 0.5 on each side
of the respective mode.

35

� Cost criteria use mostly cardinal scales (3/4), whereas benefit criteria use mostly
ordinal scales (2/3).

� The sum of weights of the cost criteria by default equals the sum weights of the
benefit criteria: weighDistribution = ‘equiobjectives’.

� On cardinal criteria, both of cost or of benefit type, we observe following constant
preference discrimination quantiles: 5% indifferent situations, 90% strict preference
situations, and 5% veto situation.

Parameters:

� If numberOfActions == None, a uniform random number between 10 and 31
of cheap, neutral or advantageous actions (equal 1/3 probability each type)
actions is instantiated

� If numberOfCriteria == None, a uniform random number between 5 and 21
of cost or benefit criteria (1/3 respectively 2/3 probability) is instantiated

� weightDistribution = {‘equiobjectives’|’fixed’|’random’|’equisignificant’ (de-
fault = ‘equisignificant’)}

� default weightScale for ‘random’ weightDistribution is 1 - numberOfCriteria

� All cardinal criteria are evaluated with decimals between 0.0 and 100.0 whereas
ordinal criteria are evaluated with integers between 0 and 10.

� commonThresholds is obsolete. Preference discrimination is specified as per-
centiles of concerned performance differences (see below).

� commonPercentiles = {‘ind’:5, ‘pref’:10, [‘weakveto’:90,] ‘veto’:95} are ex-
pressed in percents (reversed for vetoes) and only concern cardinal criteria.

� missingDataProbability := 0 <= float <= 1.0 ; probability of missing perfor-
mance evaluation on a criterion for an alternative (default 0.025).

� NA := <Decimal> (default = -999); missing data symbol.

Warning: Minimal number of decision actions required is 3 !

Example Python session

Listing 2.2: Generating a random Cost-Benefit perfor-
mance tableau

1 >>> from randomPerfTabs import RandomCBPerformanceTableau

2 >>> t = RandomCBPerformanceTableau(

3 ... numberOfActions=7,

4 ... numberOfCriteria=5,

5 ... weightDistribution='equiobjectives',

6 ... commonPercentiles={'ind':0.05,'pref':0.10,'veto':0.95},

7 ... seed=100)

(continues on next page)

36

(continued from previous page)

8

9 >>> t.showActions()

10 *----- show decision action --------------*

11 key: a1

12 short name: a1

13 name: random cheap decision action

14 key: a2

15 short name: a2

16 name: random neutral decision action

17 ...

18 key: a7

19 short name: a7

20 name: random advantageous decision action

21 >>> t.showCriteria()

22 *---- criteria -----*

23 g1 'random ordinal benefit criterion'

24 Scale = (0, 10)

25 Weight = 2

26 ...

27 g2 'random cardinal cost criterion'

28 Scale = (0.0, 100.0)

29 Weight = 3

30 Threshold ind : 1.76 + 0.00x ; percentile: 9.5

31 Threshold pref : 2.16 + 0.00x ; percentile: 14.3

32 Threshold veto : 73.19 + 0.00x ; percentile: 95.2

33 ...

In the example above, we may notice the three types of decision actions (Listing 2.2
Lines 10-20), as well as the two types (Lines 22-32) of criteria with either an ordinal
or a cardinal performance measuring scale. In the latter case, by default about 5% of
the random performance differences will be below the indifference and 10% below the
preference discriminating threshold. About 5% will be considered as considerably
large. More statistics about the generated performances is available as follows.

1 >>> t.showStatistics()

2 *-------- Performance tableau summary statistics -------*

3 Instance name : randomCBperftab

4 #Actions : 7

5 #Criteria : 5

6 Criterion name : g1

7 Criterion weight : 2

8 criterion scale : 0.00 - 10.00

9 mean evaluation : 5.14

10 standard deviation : 2.64

11 maximal evaluation : 8.00

12 quantile Q3 (x_75) : 8.00

(continues on next page)

37

(continued from previous page)

13 median evaluation : 6.50

14 quantile Q1 (x_25) : 3.50

15 minimal evaluation : 1.00

16 mean absolute difference : 2.94

17 standard difference deviation : 3.74

18 Criterion name : g2

19 Criterion weight : 3

20 criterion scale : -100.00 - 0.00

21 mean evaluation : -49.32

22 standard deviation : 27.59

23 maximal evaluation : 0.00

24 quantile Q3 (x_75) : -27.51

25 median evaluation : -35.98

26 quantile Q1 (x_25) : -54.02

27 minimal evaluation : -91.87

28 mean absolute difference : 28.72

29 standard difference deviation : 39.02

30 ...

A (potentially ranked) colored heatmap with 5 color levels is also provided.

>>> t.showHTMLPerformanceHeatmap(colorLevels=5,rankingRule=None)

Fig. 2.2: Unranked heatmap of a random Cost-Benefit performance tableau

Such a performance tableau may be stored and re-accessed as follows.

1 >>> t.save('temp')

2 *----- saving performance tableau in XMCDA 2.0 format -------------*
(continues on next page)

38

(continued from previous page)

3 File: temp.py saved !

4 >>> from perfTabs import PerformanceTableau

5 >>> t = PerformanceTableau('temp')

If needed for instance in an R session, a CSV version of the performance tableau may be
created as follows.

1 >>> t.saveCSV('temp')

2 * --- Storing performance tableau in CSV format in file temp.csv

1 ...$ less temp.csv

2 "actions","g1","g2","g3","g4","g5"

3 "a1",1.00,-17.92,-33.99,26.68,3.00

4 "a2",8.00,-30.71,-77.77,66.35,6.00

5 "a3",8.00,-41.65,-69.84,53.43,8.00

6 "a4",2.00,-39.49,-16.99,18.62,2.00

7 "a5",6.00,-91.87,-74.85,83.09,7.00

8 "a6",7.00,-32.47,-24.91,79.24,9.00

9 "a7",4.00,-91.11,-7.44,48.22,7.00

Back to Content Table (page 1)

Random three objectives performance tableaux

We provide the Random3ObjectivesPerformanceTableau class for generating random
performance tableaux concerning potential public policies evaluated with respect to three
preferential decision objectives taking respectively into account economical, societal as
well as environmental aspects.

Each public policy is qualified randomly as performing weak (-), fair (~) or good (+)
on each of the three objectives.

Generator directives are the following:

� numberOfActions = 20 (default),

� numberOfCriteria = 13 (default),

� weightDistribution = ‘equiobjectives’ (default) | ‘random’ | ‘equisignificant’,

� weightScale = (1,numberOfCriteria): only used when random criterion weights are
requested,

� integerWeights = True (default): False gives normalized rational weights,

� commonScale = (0.0,100.0),

� commonThresholds = [(5.0,0.0),(10.0,0.0),(60.0,0.0)]: Performance discrimination
thresholds may be set for ‘ind’, ‘pref’ and ‘veto’,

39

� commonMode = [‘triangular’,’variable’,0.5]: random number generators of various
other types (‘uniform’,’beta’) are available,

� valueDigits = 2 (default): evaluations are encoded as Decimals,

� missingDataProbability = 0.05 (default): random insertion of missing values with
given probability,

� NA := <Decimal> (default = -999); missing data symbol.

� seed= None.

Note: If the mode of the triangular distribution is set to ‘variable’, three modes at
0.3 (-), 0.5 (~), respectively 0.7 (+) of the common scale span are set at random for each
coalition and action.

Warning: Minimal number of decision actions required is 3 !

Example Python session

Listing 2.3: Generating a random 3 Objectives perfor-
mance tableau

1 >>> from randomPerfTabs import Random3ObjectivesPerformanceTableau

2 >>> t = Random3ObjectivesPerformanceTableau(

3 ... numberOfActions=31,

4 ... numberOfCriteria=13,

5 ... weightDistribution='equiobjectives',

6 ... seed=120)

7

8 >>> t.showObjectives()

9 *------ show objectives -------"

10 Eco: Economical aspect

11 ec04 criterion of objective Eco 20

12 ec05 criterion of objective Eco 20

13 ec08 criterion of objective Eco 20

14 ec11 criterion of objective Eco 20

15 Total weight: 80.00 (4 criteria)

16 Soc: Societal aspect

17 so06 criterion of objective Soc 16

18 so07 criterion of objective Soc 16

19 so09 criterion of objective Soc 16

20 s010 criterion of objective Soc 16

21 s013 criterion of objective Soc 16

22 Total weight: 80.00 (5 criteria)

23 Env: Environmental aspect

24 en01 criterion of objective Env 20

(continues on next page)

40

(continued from previous page)

25 en02 criterion of objective Env 20

26 en03 criterion of objective Env 20

27 en12 criterion of objective Env 20

28 Total weight: 80.00 (4 criteria)

In Listing 2.3 above, we notice that 5 equisignificant criteria (g06, g07, g09, g10, g13)
evaluate for instance the performance of the public policies from a societal point of view
(Lines 16-22). 4 equisignificant criteria do the same from an economical (Lines 10-15),
respectively an environmental point of view (Lines 23-28). The equiobjectives directive
results hence in a balanced total weight (80.00) for each decision objective.

1 >>> t.showActions()

2 key: p01

3 name: random public policy Eco+ Soc- Env+

4 profile: {'Eco': 'good', 'Soc': 'weak', 'Env': 'good'}

5 key: p02

6 ...

7 key: p26

8 name: random public policy Eco+ Soc+ Env-

9 profile: {'Eco': 'good', 'Soc': 'good', 'Env': 'weak'}

10 ...

11 key: p30

12 name: random public policy Eco- Soc- Env-

13 profile: {'Eco': 'weak', 'Soc': 'weak', 'Env': 'weak'}

14 ...

Variable triangular modes (0.3, 0.5 or 0.7 of the span of the measure scale) for each
objective result in different performance status for each public policy with respect to the
three objectives. Policy p01, for instance, will probably show good performances wrt the
economical and environmental aspects, and weak performances wrt the societal aspect.

For testing purposes we provide a special PartialPerformanceTableau class for extract-
ing a partial performance tableau from a given tableau instance. In the example
blow, we may construct the partial performance tableaux corresponding to each one of
the three decision objectives.

1 >>> from perfTabs import PartialPerformanceTableau

2 >>> teco = PartialPerformanceTableau(t,criteriaSubset=\

3 ... t.objectives['Eco']['criteria'])

4

5 >>> tsoc = PartialPerformanceTableau(t,criteriaSubset=\

6 ... t.objectives['Soc']['criteria'])

7

8 >>> tenv = PartialPerformanceTableau(t,criteriaSubset=\

9 ... t.objectives['Env']['criteria'])

One may thus compute a partial bipolar-valued outranking digraph for each individual
objective.

41

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> geco = BipolarOutrankingDigraph(teco)

3 >>> gsoc = BipolarOutrankingDigraph(tsoc)

4 >>> genv = BipolarOutrankingDigraph(tenv)

The three partial digraphs: geco, gsoc and genv, hence model the preferences represented
in each one of the partial performance tableaux. And, we may aggregate these three
outranking digraphs with an epistemic fusion operator.

1 >>> from digraphs import FusionLDigraph

2 >>> gfus = FusionLDigraph([geco,gsoc,genv])

3 >>> gfus.strongComponents()

4 {frozenset({'p30'}),

5 frozenset({'p10', 'p03', 'p19', 'p08', 'p07', 'p04', 'p21', 'p20',

6 'p13', 'p23', 'p16', 'p12', 'p24', 'p02', 'p31', 'p29',

7 'p05', 'p09', 'p28', 'p25', 'p17', 'p14', 'p15', 'p06',

8 'p01', 'p27', 'p11', 'p18', 'p22'}),

9 frozenset({'p26'})}

10 >>> from digraphs import StrongComponentsCollapsedDigraph

11 >>> scc = StrongComponentsCollapsedDigraph(gfus)

12 >>> scc.showActions()

13 *----- show digraphs actions --------------*

14 key: frozenset({'p30'})

15 short name: Scc_1

16 name: _p30_

17 comment: collapsed strong component

18 key: frozenset({'p10', 'p03', 'p19', 'p08', 'p07', 'p04', 'p21', 'p20',

→˓ 'p13',

19 'p23', 'p16', 'p12', 'p24', 'p02', 'p31', 'p29', 'p05',

→˓ 'p09', 'p28', 'p25',

20 'p17', 'p14', 'p15', 'p06', 'p01', 'p27', 'p11', 'p18',

→˓ 'p22'})

21 short name: Scc_2

22 name: _p10_p03_p19_p08_p07_p04_p21_p20_p13_p23_p16_p12_p24_p02_

→˓p31_\

23 p29_p05_p09_p28_p25_p17_p14_p15_p06_p01_p27_p11_p18_p22_

24 comment: collapsed strong component

25 key: frozenset({'p26'})

26 short name: Scc_3

27 name: _p26_

28 comment: collapsed strong component

A graphviz drawing illustrates the apparent preferential links between the strong compo-
nents.

1 >>> scc.exportGraphViz('scFusionObjectives')

2 *---- exporting a dot file for GraphViz tools ---------*

(continues on next page)

42

(continued from previous page)

3 Exporting to scFusionObjectives.dot

4 dot -Grankdir=BT -Tpng scFusionObjectives.dot -o scFusionObjectives.png

Fig. 2.3: Strong components digraph

Public policy p26 (Eco+ Soc+ Env-) appears dominating the other policies, whereas
policy p30 (Eco- Soc- Env-) appears to be dominated by all the others.

Random academic performance tableaux

The RandomAcademicPerformanceTableau class generates temporary performance
tableaux with random grades for a given number of students in different courses (see
Lecture 4: Grading, Algorithmic decision Theory Course http://hdl.handle.net/10993/
37933)

Parameters :

� number of students,

� number of courses,

� weightDistribution := ‘equisignificant’ | ‘random’ (default)

� weightScale := (1, 1 | numberOfCourses (default when random))

� IntegerWeights := Boolean (True = default)

� commonScale := (0,20) (default)

� ndigits := 0

� WithTypes := Boolean (False = default)

43

http://hdl.handle.net/10993/37933
http://hdl.handle.net/10993/37933

� commonMode := (‘triangular’,xm=14,r=0.25) (default)

� commonThresholds := {‘ind’:(0,0), ‘pref’:(1,0)} (default)

� missingDataProbability := 0.0 (default)

� NA := <Decimal> (default = -999); missing data symbol.

When parameter WithTypes is set to True, the students are randomly allocated to one
of the four categories: weak (1/6), fair (1/3), good (1/3), and excellent (1/3), in the
bracketed proportions. In a default 0-20 grading range, the random range of a weak
student is 0-10, of a fair student 4-16, of a good student 8-20, and of an excellent student
12-20. The random grading generator follows in this case a double triangular probablity
law with mode (xm) equal to the middle of the random range and median repartition (r
= 0.5) of probability each side of the mode.

Listing 2.4: Generating a random academic performance
tableau

1 >>> from randomPerfTabs import RandomAcademicPerformanceTableau

2 >>> t = RandomAcademicPerformanceTableau(

3 ... numberOfStudents=11,

4 ... numberOfCourses=7, missingDataProbability=0.03,

5 ... WithTypes=True, seed=100)

6

7 >>> t

8 *------- PerformanceTableau instance description ------*

9 Instance class : RandomAcademicPerformanceTableau

10 Seed : 100

11 Instance name : randstudPerf

12 # Actions : 11

13 # Criteria : 7

14 Attributes : ['randomSeed', 'name', 'actions',

15 'criteria', 'evaluation', 'weightPreorder']

16 >>> t.showPerformanceTableau()

17 *---- performance tableau -----*

18 Courses | 'm1' 'm2' 'm3' 'm4' 'm5' 'm6' 'm7'

19 ECTS | 2 1 3 4 1 1 5

20 ---------|--

21 's01f' | 12 13 15 08 16 06 15

22 's02g' | 10 15 20 11 14 15 18

23 's03g' | 14 12 19 11 15 13 11

24 's04f' | 13 15 12 13 13 10 06

25 's05e' | 12 14 13 16 15 12 16

26 's06g' | 17 13 10 14 NA 15 13

27 's07e' | 12 12 12 18 NA 13 17

28 's08f' | 14 12 09 13 13 15 12

29 's09g' | 19 14 15 13 09 13 16

30 's10g' | 10 12 14 17 12 16 09

31 's11w' | 10 10 NA 10 10 NA 08
(continues on next page)

44

(continued from previous page)

32 >>> t.weightPreorder

33 [['m2', 'm5', 'm6'], ['m1'], ['m3'], ['m4'], ['m7']]

The example tableau, generated for instance above with missingDataProbability = 0.03,
WithTypes = True and seed = 100 (see Listing 2.4 Lines 2-5), results in a set of two
excellent (s05, s07), five good (s02, s03, s06, s09, s10), three fair (s01, s04, s08) and one
weak (s11) student performances. Notice that six students get a grade below the course
validating threshold 10 and we observe four missing grades (NA), two in course m5 and
one in course m3 and course m6 (see Lines 21-31).

We may show a statistical summary of the students’ grades obtained in the heighest
weighted course, namely m7, followed by a performance heatmap browser view showing
a global ranking of the students’ performances from best to weakest.

Listing 2.5: Student performance summary statistics per
course

1 >>> t.showCourseStatistics('m7')

2 *----- Summary performance statistics ------*

3 Course name : g7

4 Course weight : 5

5 # Students : 11

6 grading scale : 0.00 - 20.00

7 # missing evaluations : 0

8 mean evaluation : 12.82

9 standard deviation : 3.79

10 maximal evaluation : 18.00

11 quantile Q3 (x_75) : 16.25

12 median evaluation : 14.00

13 quantile Q1 (x_25) : 10.50

14 minimal evaluation : 6.00

15 mean absolute difference : 4.30

16 standard difference deviation : 5.35

17 >>> t.showHTMLPerformanceHeatmap(colorLevels=5,

18 ... pageTitle='Ranking the students')

45

Fig. 2.4: Ranking the students with a performance heatmap view

The ranking shown here in Fig. 2.4 is produced with the default NetFlows ranking rule
(page 78). With a mean marginal correlation of +0.361 (see Listing 2.6 Lines 17-) asso-
ciated with a low standard deviation (0.248), the result represents a rather fair weighted
consensus made between the individual courses’ marginal rankings.

Listing 2.6: Consensus quality of the students’s ranking

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> g = BipolarOutrankingDigraph(t)

3 >>> t.showRankingConsensusQuality(g.computeNetFlowsRanking())

4 Consensus quality of ranking:

5 ['s07', 's02', 's09', 's05', 's06', 's03', 's10',

6 's01', 's08', 's04', 's11']

7 criterion (weight): correlation

8 -------------------------------

9 m7 (0.294): +0.727

10 m4 (0.235): +0.309

11 m2 (0.059): +0.291

12 m3 (0.176): +0.200

13 m1 (0.118): +0.109

14 m6 (0.059): +0.091

15 m5 (0.059): +0.073

16 Summary:

17 Weighted mean marginal correlation (a): +0.361

(continues on next page)

46

(continued from previous page)

18 Standard deviation (b) : +0.248

19 Ranking fairness (a)-(b) : +0.113

Random linearly ranked performance tableaux

Finally, we provide the RandomRankPerformanceTableau class for generating multiple
criteria ranked performance tableaux, i.e. on each criterion, all decision action’s evalua-
tions appear linearly ordered without ties.

This type of random performance tableau is matching the RandomLinearVotingProfile
class provided by the votingProfiles module.

Parameters:

� number of actions,

� number of performance criteria,

� weightDistribution := ‘equisignificant’ | ‘random’ (default, see above,)

� weightScale := (1, 1 | numberOfCriteria (default when random)).

� integerWeights := Boolean (True = default)

� commonThresholds (default) := {

‘ind’:(0,0),

‘pref’:(1,0),

‘veto’:(numberOfActions,0)

} (default)

Back to Content Table (page 1)

2.2 How to create a new performance tableau instance

� Editing a template file (page 48)

� Editing the decision alternatives (page 50)

� Editing the decision objectives (page 51)

� Editing the family of performance criteria (page 52)

� Editing the performance table (page 55)

� Inspecting the template outranking relation (page 56)

� Ranking the template peformance tableau (page 58)

47

tutorial.html#the-randomperformancetableau-generator

In this tutorial we illustrate a way of creating a new PerformanceTableau instance by
editing a template with 5 decision alternatives, 3 decision objectives and 6 performance
criteria.

Editing a template file

For this purpose we provide the following perfTab_Template.py file in the examples
directory of the Digraph3 resources.

Listing 2.7: PerformanceTableau object template

1 ###

2 # Digraph3 documentation

3 # Template for creating a new PerformanceTableau instance

4 # (C) R. Bisdorff Mar 2021

5 # Digraph3/examples/perfTab_Template.py

6 ##

7 from decimal import Decimal

8 from collections import OrderedDict

9 #####

10 # edit the decision actions

11 # avoid special characters, like '_', '/' or ':',

12 # in action identifiers and short names

13 actions = OrderedDict([

14 ('a1', {

15 'shortName': 'action1',

16 'name': 'decision alternative a1',

17 'comment': 'some specific features of this alternative',

18 }),

19 ...

20 ...

21])

22 #####

23 # edit the decision objectives

24 # adjust the list of performance criteria

25 # and the total weight (sum of the criteria weights)

26 # per objective

27 objectives = OrderedDict([

28 ('obj1', {

29 'name': 'decision objective obj1',

30 'comment': "some specific features of this objective",

31 'criteria': ['g1', 'g2'],

32 'weight': Decimal('6'),

33 }),

34 ...

35 ...

36])

(continues on next page)

48

_static/perfTab_Template.py

(continued from previous page)

37 #####

38 # edit the performance criteria

39 # adjust the objective reference

40 # Left Decimal of a threshold = constant part and

41 # right Decimal = proportional part of the threshold

42 criteria = OrderedDict([

43 ('g1', {

44 'shortName': 'crit1',

45 'name': "performance criteria 1",

46 'objective': 'obj1',

47 'preferenceDirection': 'max',

48 'comment': 'measurement scale type and unit',

49 'scale': (Decimal('0.0'), Decimal('100.0'),

50 'thresholds': {'ind': (Decimal('2.50'), Decimal('0.0')),

51 'pref': (Decimal('5.00'), Decimal('0.0')),

52 'veto': (Decimal('60.00'), Decimal('0.0'))

53 },

54 'weight': Decimal('3'),

55 }),

56 ...

57 ...

58])

59 #####

60 # default missing data symbol = -999

61 NA = Decimal('-999')

62 #####

63 # edit the performance evaluations

64 # criteria to be minimized take negative grades

65 evaluation = {

66 'g1': {

67 'a1':Decimal("41.0"),

68 'a2':Decimal("100.0"),

69 'a3':Decimal("63.0"),

70 'a4':Decimal('23.0'),

71 'a5': NA,

72 },

73 # g2 is of ordinal type and scale 0-10

74 'g2': {

75 'a1':Decimal("4"),

76 'a2':Decimal("10"),

77 'a3':Decimal("6"),

78 'a4':Decimal('2'),

79 'a5':Decimal('9'),

80 },

81 # g3 has preferenceDirection = 'min'

82 'g3': {

(continues on next page)

49

(continued from previous page)

83 'a1':Decimal("-52.2"),

84 'a2':NA,

85 'a3':Decimal("-47.3"),

86 'a4':Decimal('-35.7'),

87 'a5':Decimal('-68.00'),

88 },

89 ...

90 ...

91 }

92 ####################

The template file, shown in Listing 2.7, contains first the instructions to import the re-
quired Decimal and OrderedDict classes (see Lines 7-8). Four main sections are following:
the potential decision actions, the decision objectives, the performance criteria, and
finally the performance evaluation.

Editing the decision alternatives

Decision alternatives are stored in attribute actions under the OrderedDict format (see
the OrderedDict (https://docs.python.org/3/library/collections.html) description in the
Python documentation).

Required attributes of each decision alternative, besides the object identifier, are: short-
Name, name and comment (see Lines 15-17). The shortName attribute is essentially
used when showing the performance tableau or the performance heatmap in a browser
view.

Note: Mind that graphviz drawings require digraph actions’ (nodes) identifier strings
without any special characters like _ or /.

Decision actions descriptions are stored in the order of which they appear in the stored
instance file. The OrderedDict object keeps this given order when iterating over the
decision alternatives.

The random performance tableau models presented in the previous tutorial use the actions
attribute for storing special features of the decision alternatives. The Cost-Benefit model,
for instance, uses a type attribute for distinguishing between advantageous, neutral and
cheap alternatives. The 3-Objectives model keeps a detailed record of the performance
profile per decision objective and the corresponding random generators per performance
criteria (see Lines 7- below).

1 >>> t = Random3ObjectivesPerformanceTableau()

2 >>> t.actions

3 OrderedDict([

4 ('p01', {'shortName': 'p01',

5 'name': 'action p01 Eco~ Soc- Env+',
(continues on next page)

50

https://docs.python.org/3/library/collections.html

(continued from previous page)

6 'comment': 'random public policy',

7 'Eco': 'fair',

8 'Soc': 'weak',

9 'Env': 'good',

10 'profile': {'Eco':'fair',

11 'Soc':'weak',

12 'Env':'good'}

13 'generators': {'ec01': ('triangular', 50.0, 0.5),

14 'so02': ('triangular', 30.0, 0.5),

15 'en03': ('triangular', 70.0, 0.5),

16 ...

17 },

18 }

19),

20 ...

21])

The second section of the template file concerns the decision objectives.

Editing the decision objectives

The minimal required attributes (see Listing 2.7 Lines 27-33) of the ordered decision
objectives dictionary, besides the individual objective identifiers, are name, comment,
criteria (the list of significant performance criteria) and weight (the importance of the
decision objective). The latter attribute contains the sum of the significance weights of
the objective’s criteria list.

The objectives attribute is methodologically useful for specifying the performance crite-
ria significance in building decision recommendations. Mostly, we assume indeed that de-
cision objectives are all equally important and the performance criteria are equi-significant
per objective. This is, for instance, the default setting in the random 3-Objectives per-
formance tableau model.

Listing 2.8: Example of decision objectives’ description

1 >>> t = Random3ObjectivesPerformanceTableau()

2 >>> t.objectives

3 OrderedDict([

4 ('Eco',

5 {'name': 'Economical aspect',

6 'comment': 'Random3ObjectivesPerformanceTableau generated',

7 'criteria': ['ec01', 'ec06', 'ec09'],

8 'weight': Decimal('48')}),

9 ('Soc',

10 {'name': 'Societal aspect',

11 'comment': 'Random3ObjectivesPerformanceTableau generated',

(continues on next page)

51

(continued from previous page)

12 'criteria': ['so02', 'so12'],

13 'weight': Decimal('48')}),

14 ('Env',

15 {'name': 'Environmental aspect',

16 'comment': 'Random3ObjectivesPerformanceTableau generated',

17 'criteria': ['en03', 'en04', 'en05', 'en07',

18 'en08', 'en10', 'en11', 'en13'],

19 'weight': Decimal('48')})

20])

The importance weight sums up to 48 for each one of the three example decision objectives
shown in Listing 2.8 (Lines 8,13 and 19), so that the significance of each one of the 3
economic criteria is set to 16, of both societal criteria is set to 24, and of each one of the
8 environmental criteria is set to 8.

Note: Mind that the objectives attribute is always present in a PerformanceTableau
object instance, even when empty. In this case, we consider that each performance cri-
terion canonically represents in fact its own decision objective. The criterion significance
equals in this case the corresponding decision objective’s importance weight.

The third section of the template file concerns now the performance criteria.

Editing the family of performance criteria

In order to assess how well each potential decision alternative is satisfying a given decision
objective, we need performance criteria, i.e. decimal-valued grading functions gathered
in an ordered criteria dictionary. The required attributes (see Listing 2.9), besides
the criteria identifiers, are the usual shortName, name and comment. Specific for a
criterion are furthermore the objective reference, the significance weight, the grading
scale (minimum and maximum performance values), the preferenceDirection (‘max’
or ‘min’) and the performance discrimination thresholds.

Listing 2.9: Example of performance criteria description

1 criteria = OrderedDict([

2 ('g1', {

3 'shortName': 'crit1',

4 'name': "performance criteria 1",

5 'comment': 'measurement scale type and unit',

6 'objective': 'obj1',

7 'weight': Decimal('3'),

8 'scale': (Decimal('0.0'), Decimal('100.0'),

9 'preferenceDirection': 'max',

10 'thresholds': {'ind': (Decimal('2.50'), Decimal('0.0')),

11 'pref': (Decimal('5.00'), Decimal('0.0')),

(continues on next page)

52

(continued from previous page)

12 'veto': (Decimal('60.00'), Decimal('0.0'))

13 },

14 }),

15 ...

16 ...])

In our bipolar-valued outranking approach, all performance criteria implement decimal-
valued grading functions, where preferences are either increasing or decreasing with mea-
sured performances.

Note: In order to model a coherent performance tableau, the decision criteria must
satisfy two methodological requirements:

1. Independance: Each decision criterion implements a grading that is functionally
independent of the grading of the other decision criteria, i.e. the performance
measured on one of the criteria does not constrain the performance measured on
any other criterion.

2. Non redundancy: Each performance criterion is only significant for a single de-
cision objective.

In order to take into account any, usually unavoidable, imprecision of the performance
grading procedures, we may specify three performance discrimination thresholds: an
indifference (‘ind’), a preference (‘pref’) and a considerable performance differ-
ence (‘veto’) threshold (see Listing 2.9 Lines 10-12). The left decimal number of a
threshold description tuple indicates a constant part, whereas the right decimal number
indicates a proportional part.

On the template performance criterion g1, shown in Listing 2.9, we observe for instance
a grading scale from 0.0 to 100.0 with a constant indifference threshold of 2.5, a constant
preference threshold of 5.0, and a constant considerable performance difference threshold
of 60.0. The latter theshold will trigger, the case given, a polarisation of the outranking
statement [BIS-2013] .

In a random Cost-Benefit performance tableau model we may obtain by default the
following content.

Listing 2.10: Example of cardinal Costs criterion

1 >>> tcb = RandomCBPerformanceTableau()

2 >>> tcb.showObjectives()

3 *------ decision objectives -------"

4 C: Costs

5 c1 random cardinal cost criterion 6

6 Total weight: 6.00 (1 criteria)

7 ...

8 ...

(continues on next page)

53

(continued from previous page)

9 >>> tcb.criteria

10 OrderedDict([

11 ('c1', {'preferenceDirection': 'min',

12 'scaleType': 'cardinal',

13 'objective': 'C',

14 'shortName': 'c1',

15 'name': 'random cardinal cost criterion',

16 'scale': (0.0, 100.0),

17 'weight': Decimal('6'),

18 'randomMode': ['triangular', 50.0, 0.5],

19 'comment': 'Evaluation generator: triangular law ...',

20 'thresholds':

21 OrderedDict([

22 ('ind', (Decimal('1.49'), Decimal('0'))),

23 ('pref', (Decimal('3.7'), Decimal('0'))),

24 ('veto', (Decimal('67.71'), Decimal('0')))

25])

26 }

27 ...

28 ...

29])

Criterion c1 appears here (see Listing 2.10) to be a cardinal criterion to be minimized
and significant for the Costs (C) decision objective. We may use the showCriteria()

method for printing the corresponding performance discrimination thresholds.

1 >>> tcb.showCriteria(IntegerWeights=True)

2 *---- criteria -----*

3 c1 'Costs/random cardinal cost criterion'

4 Scale = (0.0, 100.0)

5 Weight = 6

6 Threshold ind : 1.49 + 0.00x ; percentile: 5.13

7 Threshold pref : 3.70 + 0.00x ; percentile: 10.26

8 Threshold veto : 67.71 + 0.00x ; percentile: 96.15

The indifference threshold on this criterion amounts to a constant value of 1.49 (Line 6
above). More or less 5% of the observed performance differences on this criterion appear
hence to be insignificant. Similarly, with a preference threshold of 3.70, about 90% of the
observed performance differences are preferentially significant (Line 7). Furthermore,
100.0 - 96.15 = 3.85% of the observed performance differences appear to be considerable
(Line 8) and will trigger a polarisation of the corresponding outranking statements.

After the performance criteria description, we are ready for recording the actual perfor-
mance table.

54

Editing the performance table

The individual grades of each decision alternative on each decision criterion are recorded
in a double criterion x action dictionary called evaluation (see Listing 2.11). As we may
encounter missing data cases, we previously define a missing data symbol NA which is
set here to a value disjoint from all the measurement scales, by default Decimal(‘-999’)
(Line 2).

Listing 2.11: Editing performance grades

1 #----------

2 NA = Decimal('-999')

3 #----------

4 evaluation = {

5 'g1': {

6 'a1':Decimal("41.0"),

7 'a2':Decimal("100.0"),

8 'a3':Decimal("63.0"),

9 'a4':Decimal('23.0'),

10 'a5': NA, # missing data

11 },

12 ...

13 ...

14 # g3 has preferenceDirection = 'min'

15 'g3': {

16 'a1':Decimal("-52.2"), # negative grades

17 'a2':NA,

18 'a3':Decimal("-47.3"),

19 'a4':Decimal('-35.7'),

20 'a5':Decimal('-68.00'),

21 },

22 ...

23 ...

24 }

Notice in Listing 2.11 (Lines 16-) that on a criterion with preferenceDirection = ‘min’
all performance grades are recorded as negative values.

We may now inspect the eventually recorded complete template performance table.

1 >>> from perfTabs import PerformanceTableau

2 >>> t = PerformanceTableau('perfTab_Template')

3 >>> t.showPerformanceTableau(ndigits=1)

4 *---- performance tableau -----*

5 Criteria | 'g1' 'g2' 'g3' 'g4' 'g5' 'g6'

6 Actions | 3 3 6 2 2 2

7 ---------|---

8 'action1' | 41.0 4.0 -52.2 71.0 63.0 22.5

9 'action2' | 100.0 10.0 NA 89.0 30.7 75.0
(continues on next page)

55

(continued from previous page)

10 'action3' | 63.0 6.0 -47.3 55.4 63.5 NA

11 'action4' | 23.0 2.0 -35.7 83.5 37.5 54.9

12 'action5' | NA 9.0 -68.0 10.0 88.0 75.0

We may furthermore compute the associated outranking digraph and check if we observe
any polarised outranking situtations.

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> g = BipolarOutrankingDigraph(t)

3 >>> g.showVetos()

4 *---- Veto situations ---

5 number of veto situations : 1

6 1: r(a4 >= a2) = -0.44

7 criterion: g1

8 Considerable performance difference : -77.00

9 Veto discrimination threshold : -60.00

10 Polarisation: r(a4 >= a2) = -0.44 ==> -1.00

11 *---- Counter-veto situations ---

12 number of counter-veto situations : 1

13 1: r(a2 >= a4) = 0.56

14 criterion: g1

15 Considerable performance difference : 77.00

16 Counter-veto threshold : 60.00

17 Polarisation: r(a2 >= a4) = 0.56 ==> +1.00

Indeed, due to the considerable performance difference (77.00) oberved on performance
criterion g1, alternative a2 for sure outranks alternative a4, respectively a4 for sure
does not outrank a2.

Inspecting the template outranking relation

Let us have a look at the outranking relation table.

Listing 2.12: The template outranking relation

1 >>> g.showRelationTable()

2 * ---- Relation Table -----

3 r | 'a1' 'a2' 'a3' 'a4' 'a5'

4 -----|-----------------------------------

5 'a1' | +1.00 -0.44 -0.22 -0.11 +0.06

6 'a2' | +0.44 +1.00 +0.33 +1.00 +0.28

7 'a3' | +0.67 -0.33 +1.00 +0.00 +0.17

8 'a4' | +0.11 -1.00 +0.00 +1.00 +0.06

9 'a5' | -0.06 -0.06 -0.17 -0.06 +1.00

We may notice in the outranking relation table above (see Listing 2.12) that decision
alternative a2 positively outranks all the other four alternatives (Line 6). Similarly,

56

alternative a5 is positively outranked by all the other alternatives (see Line 9). We
may orient this way the graphviz drawing of the template outranking digraph.

>>> g.exportGraphViz(fileName= 'template',

... firstChoice =['a2'],

... lastChoice=['a5'])

---- exporting a dot file for GraphViz tools ---------

Exporting to template.dot

dot -Grankdir=BT -Tpng template.dot -o template.png

Fig. 2.5: The template outranking digraph

In Fig. 2.5 we may notice that the template outranking digraph models in fact a par-
tial order on the five potential decision alternatives. Alternatives action3 (‘a3’) and
action4 (‘a4’) appear actually incomparable. In Listing 2.12 their pairwise outranking
chracteritics show indeed the indeterminate value 0.00 (Lines 7-8). We may check their
pairwise comparison as follows.

1 >>> g.showPairwiseComparison('a3','a4')

2 *------------ pairwise comparison ----*

3 Comparing actions : (a3, a4)

4 crit. wght. g(x) g(y) diff | ind pref r() |

(continues on next page)

57

(continued from previous page)

5 ------------------------------- -------------------

6 g1 3.00 63.00 23.00 +40.00 | 2.50 5.00 +3.00 |

7 g2 3.00 6.00 2.00 +4.00 | 0.00 1.00 +3.00 |

8 g3 6.00 -47.30 -35.70 -11.60 | 0.00 10.00 -6.00 |

9 g4 2.00 55.40 83.50 -28.10 | 2.09 4.18 -2.00 |

10 g5 2.00 63.50 37.50 +26.00 | 0.00 10.00 +2.00 |

11 g6 NA 54.90

12 Outranking characteristic value: r(a3 >= a4) = +0.00

13 Valuation in range: -18.00 to +18.00

The incomparability situation between ‘a3’ and ‘a4’ results here from a perfect balancing
of positive (+8) and negative (-8) criteria significance weights.

Ranking the template peformance tableau

We may eventually rank the five decision alternatives with a heatmap browser view
following the Copeland ranking rule which consistently reproduces the partial outranking
order shown in Fig. 2.5.

>>> g.showHTMLPerformanceHeatmap(ndigits=1,colorLevels=5,

... Correlations=True,rankingRule='Copeland',

... pageTitle='Heatmap of the template performance tableau')

Due to a 11 against 7 plurality tyranny effect, the Copeland ranking rule, essentially
based on crisp majority outranking counts, puts here alternative action5 (a5) last, despite
its excellent grades observed on criteria g2, g5 and g6. A slightly fairer ranking result
may be obtained with the NetFlows ranking rule.

58

>>> g.showHTMLPerformanceHeatmap(ndigits=1,colorLevels=5,

... Correlations=True,rankingRule='NetFlows',

... pageTitle='Heatmap of the template performance tableau')

It might be opportun to furthermore study the robustness of the apparent outranking
situations when assuming only ordinal or uncertain criteria significance weights. If inter-
ested in mainly objectively unopposed (multipartisan) outranking situations, one might
also try the UnOpposedOutrankingDigraph constructor. (see the advanced topics of the
Digraph3 documentation).

Back to Content Table (page 1)

2.3 Computing the winner of an election with the votingProfiles

module

� Linear voting profiles (page 60)

� Computing the winner (page 61)

� The Condorcet winner (page 63)

� Cyclic social preferences (page 65)

� On generating realistic random linear voting profiles (page 67)

59

Linear voting profiles

The votingProfiles module provides resources for handling election results [ADT-L2],
like the LinearVotingProfile class. We consider an election involving a finite set of
candidates and finite set of weighted voters, who express their voting preferences in a
complete linear ranking (without ties) of the candidates. The data is internally stored
in two ordered dictionaries, one for the voters and another one for the candidates. The
linear ballots are stored in a standard dictionary.

1 candidates = OrderedDict([('a1',...), ('a2',...), ('a3', ...), ...}

2 voters = OrderedDict([('v1',{'weight':10}), ('v2',{'weight':3}), ...}

3 ## each voter specifies a linearly ranked list of candidates

4 ## from the best to the worst (without ties

5 linearBallot = {

6 'v1' : ['a2','a3','a1', ...],

7 'v2' : ['a1','a2','a3', ...],

8 ...

9 }

The module provides a RandomLinearVotingProfile class for generating random in-
stances of the LinearVotingProfile class. In an interactive Python session we may
obtain for the election of 3 candidates by 5 voters the following result.

Listing 2.13: Example of random linear voting profile

1 >>> from votingProfiles import RandomLinearVotingProfile

2 >>> v = RandomLinearVotingProfile(numberOfVoters=5,

3 ... numberOfCandidates=3,

4 ... RandomWeights=True)

5

6 >>> v.candidates

7 OrderedDict([('a1',{'name':'a1}), ('a2',{'name':'a2'}),

8 ('a3',{'name':'a3'})])

9 >>> v.voters

10 OrderedDict([('v1',{'weight': 2}), ('v2':{'weight': 3}),

11 ('v3',{'weight': 1}), ('v4':{'weight': 5}),

12 ('v5',{'weight': 4})])

13 >>> v.linearBallot

14 {'v1': ['a1', 'a2', 'a3',],

15 'v2': ['a3', 'a2', 'a1',],

16 'v3': ['a1', 'a3', 'a2',],

17 'v4': ['a1', 'a3', 'a2',],

18 'v5': ['a2', 'a3', 'a1',]}

Notice that in this random example, the five voters are weighted (see Listing 2.13 Lines
10-12). Their linear ballots can be viewed with the showLinearBallots() method.

1 >>> v.showLinearBallots()

(continues on next page)

60

(continued from previous page)

2 voters(weight) candidates rankings

3 v1(2): ['a2', 'a1', 'a3']

4 v2(3): ['a3', 'a1', 'a2']

5 v3(1): ['a1', 'a3', 'a2']

6 v4(5): ['a1', 'a2', 'a3']

7 v5(4): ['a3', 'a1', 'a2']

8 # voters: 15

Editing of the linear voting profile may be achieved by storing the data in a file, edit it,
and reload it again.

1 >>> v.save(fileName='tutorialLinearVotingProfile1')

2 *--- Saving linear profile in file: <tutorialLinearVotingProfile1.py> --

→˓-*

3 >>> from votingProfiles import LinearVotingProfile

4 >>> v = LinearVotingProfile('tutorialLinearVotingProfile1')

Computing the winner

We may easily compute uni-nominal votes, i.e. how many times a candidate was ranked
first, and see who is consequently the simple majority winner(s) in this election.

1 >>> v.computeUninominalVotes()

2 {'a2': 2, 'a1': 6, 'a3': 7}

3 >>> v.computeSimpleMajorityWinner()

4 ['a3']

As we observe no absolute majority (8/15) of votes for any of the three candidate, we
may look for the instant runoff winner instead (see [ADT-L2]).

Listing 2.14: Example Instant Run Off Winner

1 >>> v.computeInstantRunoffWinner(Comments=True)

2 Half of the Votes = 7.50

3 ==> stage = 1

4 remaining candidates ['a1', 'a2', 'a3']

5 uninominal votes {'a1': 6, 'a2': 2, 'a3': 7}

6 minimal number of votes = 2

7 maximal number of votes = 7

8 candidate to remove = a2

9 remaining candidates = ['a1', 'a3']

10 ==> stage = 2

11 remaining candidates ['a1', 'a3']

12 uninominal votes {'a1': 8, 'a3': 7}

13 minimal number of votes = 7

14 maximal number of votes = 8

(continues on next page)

61

(continued from previous page)

15 candidate a1 obtains an absolute majority

16 Instant run off winner: ['a1']

In stage 1, no candidate obtains an absolute majority of votes. Candidate a2 obtains
the minimal number of votes (2/15) and is, hence, eliminated. In stage 2, candidate a1
obtains an absolute majority of the votes (8/15) and is eventually elected (see Listing
2.14).

We may also follow the Chevalier de Borda’s advice and, after a rank analysis of the
linear ballots, compute the Borda score -the average rank- of each candidate and hence
determine the Borda winner(s).

Listing 2.15: Example of Borda rank scores

1 >>> v.computeRankAnalysis()

2 {'a2': [2, 5, 8], 'a1': [6, 9, 0], 'a3': [7, 1, 7]}

3 >>> v.computeBordaScores()

4 OrderedDict([

5 ('a1', {'BordaScore': 24, 'averageBordaScore': 1.6}),

6 ('a3', {'BordaScore': 30, 'averageBordaScore': 2.0}),

7 ('a2', {'BordaScore': 36, 'averageBordaScore': 2.4})])

8 >>> v.computeBordaWinners()

9 ['a1']

Candidate a1 obtains the minimal Borda score, followed by candidate a3 and finally
candidate a2 (see Listing 2.15). The corresponding Borda rank analysis table may be
printed out with a corresponding show() command.

62

Listing 2.16: Rank analysis example

1 >>> v.showRankAnalysisTable()

2 *---- Borda rank analysis tableau -----*

3 candi- | alternative-to-rank | Borda

4 dates | 1 2 3 | score average

5 -------|-------------------------------------

6 'a1' | 6 9 0 | 24/15 1.60

7 'a3' | 7 1 7 | 30/15 2.00

8 'a2' | 2 5 8 | 36/15 2.40

In our randomly generated election results, we are lucky: The instant runoff winner and
the Borda winner both are candidate a1 (see Listing 2.14 and Listing 2.16). However, we
could also follow theMarquis de Condorcet ’s advice, and compute themajority margins
obtained by voting for each individual pair of candidates.

The Condorcet winner

For instance, candidate a1 is ranked four times before and once behind candidate a2.
Hence the corresponding majority margin M(a1,a2) is 4 - 1 = +3. These majority
margins define on the set of candidates what we call the majority margins digraph.
The MajorityMarginsDigraph class (a specialization of the Digraph class) is available
for handling such kind of digraphs.

Listing 2.17: Example of Majority Margins digraph

1 >>> from votingProfiles import MajorityMarginsDigraph

2 >>> cdg = MajorityMarginsDigraph(v,IntegerValuation=True)

3 >>> cdg

4 *------- Digraph instance description ------*

5 Instance class : MajorityMarginsDigraph

6 Instance name : rel_randomLinearVotingProfile1

7 Digraph Order : 3

8 Digraph Size : 3

9 Valuation domain : [-15.00;15.00]

10 Determinateness (%) : 64.44

11 Attributes : ['name', 'actions', 'voters',

12 'ballot', 'valuationdomain',

13 'relation', 'order',

14 'gamma', 'notGamma']

15 >>> cdg.showAll()

16 *----- show detail -------------*

17 Digraph : rel_randLinearVotingProfile1

18 *---- Actions ----*

19 ['a1', 'a2', 'a3']

20 *---- Characteristic valuation domain ----*

21 {'max': Decimal('15.0'), 'med': Decimal('0'),
(continues on next page)

63

(continued from previous page)

22 'min': Decimal('-15.0'), 'hasIntegerValuation': True}

23 * ---- majority margins -----

24 M(x,y) | 'a1' 'a2' 'a3'

25 ----------|-------------------

26 'a1' | 0 11 1

27 'a2' | -11 0 -1

28 'a3' | -1 1 0

29 Valuation domain: [-15;+15]

Notice that in the case of linear voting profiles, majority margins always verify a zero
sum property: M(x,y) + M(y,x) = 0 for all candidates x and y (see Listing 2.17 Lines
26-28). This is not true in general for arbitrary voting profiles. The majority margins
digraph of linear voting profiles defines in fact a weak tournament and belongs, hence, to
the class of self-codual bipolar-valued digraphs (13).

Now, a candidate x, showing a positive majority margin M(x,y), is beating candidate y
with an absolute majority in a pairwise voting. Hence, a candidate showing only positive
terms in her row in the majority margins digraph relation table, beats all other candidates
with absolute majority of votes. Condorcet recommends to declare this candidate (is
always unique, why?) the winner of the election. Here we are lucky, it is again candidate
a1 who is hence the Condorcet winner (see Listing 2.17 Line 26).

1 >>> cdg.computeCondorcetWinners()

2 ['a1']

By seeing the majority margins like a bipolar-valued characteristic function of a global
preference relation defined on the set of candidates, we may use all operational resources
of the generic Digraph class (seeWorking with the Digraph3 software resources (page 2)),
and especially its exportGraphViz() methodPage 7, 1, for visualizing an election result.

1 >>> cdg.exportGraphViz(fileName='tutorialLinearBallots')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to tutorialLinearBallots.dot

4 dot -Grankdir=BT -Tpng tutorialLinearBallots.dot -o␣

→˓tutorialLinearBallots.png

13 The class of self-codual bipolar-valued digraphs consists of all weakly asymmetric digraphs, i.e.
digraphs containing only asymmetric and/or indeterminate links. Limit cases consists of, on the one
side, full tournaments with indeterminate reflexive links, and, on the other side, fully indeterminate

digraphs. In this class, the converse (inverse ~) operator is indeed identical to the dual (negation -)
one.

64

Fig. 2.6: Visualizing an election result

In Fig. 2.6 we notice that the majority margins digraph from our example linear voting
profile gives a linear order of the candidates: [‘a1’, ‘a3’, ‘a2], the same actually as given
by the Borda scores (see Listing 2.15). This is by far not given in general. Usually, when
aggregating linear ballots, there appear cyclic social preferences.

Cyclic social preferences

Let us consider for instance the following linear voting profile and construct the corre-
sponding majority margins digraph.

Listing 2.18: Example of cyclic social preferences

1 >>> v.showLinearBallots()

2 voters(weight) candidates rankings

3 v1(1): ['a1', 'a3', 'a5', 'a2', 'a4']

4 v2(1): ['a1', 'a2', 'a4', 'a3', 'a5']

5 v3(1): ['a5', 'a2', 'a4', 'a3', 'a1']

6 v4(1): ['a3', 'a4', 'a1', 'a5', 'a2']

7 v5(1): ['a4', 'a2', 'a3', 'a5', 'a1']

8 v6(1): ['a2', 'a4', 'a5', 'a1', 'a3']

9 v7(1): ['a5', 'a4', 'a3', 'a1', 'a2']

10 v8(1): ['a2', 'a4', 'a5', 'a1', 'a3']

11 v9(1): ['a5', 'a3', 'a4', 'a1', 'a2']

12 >>> cdg = MajorityMarginsDigraph(v)

13 >>> cdg.showRelationTable()

14 * ---- Relation Table -----

15 S | 'a1' 'a2' 'a3' 'a4' 'a5'

16 ------|--

17 'a1' | - 0.11 -0.11 -0.56 -0.33

18 'a2' | -0.11 - 0.11 0.11 -0.11

19 'a3' | 0.11 -0.11 - -0.33 -0.11

(continues on next page)

65

(continued from previous page)

20 'a4' | 0.56 -0.11 0.33 - 0.11

21 'a5' | 0.33 0.11 0.11 -0.11 -

Now, we cannot find any completely positive row in the relation table (see Listing 2.18
Lines 17 -). No one of the five candidates is beating all the others with an absolute
majority of votes. There is no Condorcet winner anymore. In fact, when looking at a
graphviz drawing of this majority margins digraph, we may observe cyclic preferences,
like (a1 > a2 > a3 > a1) for instance (see Fig. 2.7).

1 >>> cdg.exportGraphViz('cycles')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to cycles.dot

4 dot -Grankdir=BT -Tpng cycles.dot -o cycles.png

Fig. 2.7: Cyclic social preferences

But, there may be many cycles appearing in a majority margins digraph, and, we may
detect and enumerate all minimal chordless circuits in a Digraph instance with the
computeChordlessCircuits() method.

1 >>> cdg.computeChordlessCircuits()

2 [(['a2', 'a3', 'a1'], frozenset({'a2', 'a3', 'a1'})),

3 (['a2', 'a4', 'a5'], frozenset({'a2', 'a5', 'a4'})),

4 (['a2', 'a4', 'a1'], frozenset({'a2', 'a1', 'a4'}))]

Condorcet ‘s approach for determining the winner of an election is hence not decisive in
all circumstances and we need to exploit more sophisticated approaches for finding the
winner of the election on the basis of the majority margins of the given linear ballots (see
the tutorial on ranking with multiple incommensurable criteria (page 72) and [BIS-2008]).

Many more tools for exploiting voting results are available like the browser heat map view
on voting profiles (see the technical documentation of the votingProfiles module).

66

Listing 2.19: Example linear voting heatmap

1 :linenos:

2

3 >>> v.showHTMLVotingHeatmap(rankingRule='NetFlows',

4 ... Transposed=False)

Fig. 2.8: Visualizing a linear voting profile in a heatmap format

Notice that the importance weights of the voters are negative, which means that the
preference direction of the criteria (in this case the individual voters) is decreasing, i.e.
goes from lowest (best) rank to highest (worst) rank. Notice also, that the compromise
NetFlows ranking [a4,a5,a2,a1,a3], shown in this heatmap (see Fig. 2.8) results in an
optimal ordinal correlation index of +0.778 with the pairwise majority voting margins (see
the Adavanced topic on Ordinal Correlation equals Relational Equivalence and Ranking
with multiple incommensurable criteria (page 72)). The number of voters is usually much
larger than the number of candidates. In that case, it is better to generate a transposed
voters X candidates view (see Listing 2.19 Line 2)

On generating realistic random linear voting profiles

By default, the RandomLinearVotingProfile class generates random linear voting pro-
files where every candidates has the same uniform probabilities to be ranked at a certain
position by all the voters. For each voter’s random linear ballot is indeed generated via
a uniform shuffling of the list of candidates.

In reality, political election data appear quite different. There will usually be different
favorite and marginal candidates for each political party. To simulate these aspects into
our random generator, we are using two random exponentially distributed polls of the
candidates and consider a bipartisan political landscape with a certain random balance
(default theoretical party repartition = 0.50) between the two sets of potential party

67

supporters (see LinearVotingProfile class). A certain theoretical proportion (default
= 0.1) will not support any party.

Let us generate such a linear voting profile for an election with 1000 voters and 15
candidates.

Listing 2.20: Generating a linear voting profile with ran-
dom polls

1 >>> from votingProfiles import RandomLinearVotingProfile

2 >>> lvp = RandomLinearVotingProfile(numberOfCandidates=15,

3 ... numberOfVoters=1000,

4 ... WithPolls=True,

5 ... partyRepartition=0.5,

6 ... other=0.1,

7 ... seed=0.9189670954954139)

8

9 >>> lvp

10 *------- VotingProfile instance description ------*

11 Instance class : RandomLinearVotingProfile

12 Instance name : randLinearProfile

13 # Candidates : 15

14 # Voters : 1000

15 Attributes : ['name', 'seed', 'candidates',

16 'voters', 'RandomWeights',

17 'sumWeights', 'poll1', 'poll2',

18 'bipartisan', 'linearBallot', 'ballot']

19 >>> lvp.showRandomPolls()

20 Random repartition of voters

21 Party_1 supporters : 460 (46.0%)

22 Party_2 supporters : 436 (43.6%)

23 Other voters : 104 (10.4%)

24 *---------------- random polls ---------------

25 Party_1(46.0%) | Party_2(43.6%)| expected

26 ---

27 a06 : 19.91% | a11 : 22.94% | a06 : 15.00%

28 a07 : 14.27% | a08 : 15.65% | a11 : 13.08%

29 a03 : 10.02% | a04 : 15.07% | a08 : 09.01%

30 a13 : 08.39% | a06 : 13.40% | a07 : 08.79%

31 a15 : 08.39% | a03 : 06.49% | a03 : 07.44%

32 a11 : 06.70% | a09 : 05.63% | a04 : 07.11%

33 a01 : 06.17% | a07 : 05.10% | a01 : 05.06%

34 a12 : 04.81% | a01 : 05.09% | a13 : 05.04%

35 a08 : 04.75% | a12 : 03.43% | a15 : 04.23%

36 a10 : 04.66% | a13 : 02.71% | a12 : 03.71%

37 a14 : 04.42% | a14 : 02.70% | a14 : 03.21%

38 a05 : 04.01% | a15 : 00.86% | a09 : 03.10%

39 a09 : 01.40% | a10 : 00.44% | a10 : 02.34%

(continues on next page)

68

(continued from previous page)

40 a04 : 01.18% | a05 : 00.29% | a05 : 01.97%

41 a02 : 00.90% | a02 : 00.21% | a02 : 00.51%

In this example (see Listing 2.20 Lines 19-), we obtain 460 Party_1 supporters (46%),
436 Party_2 supporters (43.6%) and 104 other voters (10.4%). Favorite candidates of
Party_1 supporters, with more than 10%, appear to be a06 (19.91%), a07 (14.27%) and
a03 (10.02%). Whereas for Party_2 supporters, favorite candidates appear to be a11
(22.94%), followed by a08 (15.65%), a04 (15.07%) and a06 (13.4%). Being first choice
for Party_1 supporters and fourth choice for Party_2 supporters, this candidate a06 is
a natural candidate for clearly winning this election game (see Listing 2.21).

Listing 2.21: The uninominal election winner

1 >>> lvp.computeSimpleMajorityWinner()

2 ['a06']

3 >>> lvp.computeInstantRunoffWinner()

4 ['a06']

5 >>> lvp.computeBordaWinners()

6 ['a06']

Is it also a Condorcet winner ? To verify, we start by creating the corresponding majority
margins digraph cdg with the help of the MajorityMarginsDigraph class. The created
digraph instance contains 15 actions -the candidates- and 105 oriented arcs -the positive
majority margins- (see Listing 2.22 Lines 7-8).

Listing 2.22: A majority margins digraph constructed
from a linear voting profile

1 >>> from votingProfiles import MajorityMarginsDigraph

2 >>> cdg = MajorityMarginsDigraph(lvp)

3 >>> cdg

4 *------- Digraph instance description ------*

5 Instance class : MajorityMarginsDigraph

6 Instance name : rel_randLinearProfile

7 Digraph Order : 15

8 Digraph Size : 104

9 Valuation domain : [-1000.00;1000.00]

10 Determinateness (%) : 67.08

11 Attributes : ['name', 'actions', 'voters',

12 'ballot', 'valuationdomain',

13 'relation', 'order',

14 'gamma', 'notGamma']

We may visualize the resulting pairwise majority margins by showing the HTML formated
version of the cdg relation table in a browser view.

>>> cdg.showHTMLRelationTable(tableTitle='Pairwise majority margins',

... relationName='M(x>y)')

69

Fig. 2.9: Browsing the majority margins

In Fig. 2.9, light green cells contain the positive majority margins, whereas light red
cells contain the negative majority margins. A complete light green row reveals hence
a Condorcet winner, whereas a complete light green column reveals a Condorcet loser.
We recover again candidate a06 as Condorcet winner (15), whereas the obvious Condorcet
loser is here candidate a02, the candidate with the lowest support in both parties (see
Listing 2.20 Line 40).

With a same bipolar -first ranked and last ranked candidate- selection procedure, we may
weakly rank the candidates (with possible ties) by iterating these first ranked and last
ranked choices among the remaining candidates ([BIS-1999]).

Listing 2.23: Ranking by iterating choosing the first and
last remaining candidates

1 >>> cdg.showRankingByChoosing()

2 Error: You must first run

3 self.computeRankingByChoosing(CoDual=False(default)|True) !

4 >>> cdg.computeRankingByChoosing()

5 >>> cdg.showRankingByChoosing()

6 Ranking by Choosing and Rejecting

7 1st first ranked ['a06']

8 2nd first ranked ['a11']

9 3rd first ranked ['a07', 'a08']

10 4th first ranked ['a03']

11 5th first ranked ['a01']

(continues on next page)

15 The concept of Condorcet winner -a generalization of absolute majority winners- proposed by Con-
dorcet in 1785, is an early historical example of initial digraph kernel (see the tutorial Kernel-Tutorial-
label).

70

(continued from previous page)

12 6th first ranked ['a13']

13 7th first ranked ['a04']

14 7th last ranked ['a12']

15 6th last ranked ['a14']

16 5th last ranked ['a15']

17 4th last ranked ['a09']

18 3rd last ranked ['a10']

19 2nd last ranked ['a05']

20 1st last ranked ['a02']

Before showing the ranking-by-choosing result, we have to compute the iterated bipolar
selection procedure (see Listing 2.23 Line 2). The first selection concerns a06 (first) and
a02 (last), followed by a11 (first) opposed to a05 (last), and so on, until there remains
at iteration step 7 a last pair of candidates, namely [a04, a12] (see Lines 13-14).

Notice furthermore the first ranked candidates at iteration step 3 (see Listing 2.23 Line
9), namely the pair [a07, a08]. Both candidates represent indeed conjointly the first
ranked choice. We obtain here hence a weak ranking, i.e. a ranking with a tie.

Let us mention that the instant-run-off procedure, we used before (see Listing 2.21 Line
3), when operated with a Comments=True parameter setting, will deliver a more or less
similar reversed linear ordering-by-rejecting result, namely [a02, a10, a14, a05, a09, a13,
a12, a15, a04, a01, a08, a03, a07, a11, a06], ordered from the last to the first choice.

Remarkable about both these ranking-by-choosing or ordering-by-rejecting results is the
fact that the random voting behaviour, simulated here with the help of two discrete
random variables (16), defined respectively by the two party polls, is rendering a ranking
that is more or less in accordance with the simulated balance of the polls: -Party_1
supporters : 460; Party_2 supporters: 436 (see Listing 2.20 Lines 26-40 third column).
Despite a random voting behaviour per voter, the given polls apparently show a very
strong incidence on the eventual election result. In order to avoid any manipulation of
the election outcome, public media are therefore in some countries not allowed to publish
polls during the last weeks before a general election.

Note: Mind that the specific ranking-by-choosing procedure, we use here on themajority
margins digraph, operates the selection procedure by extracting at each step initial and
terminal kernels, i.e. NP-hard operational problems (see tutorial on computing kernels
and [BIS-1999]); A technique that does not allow in general to tackle voting profiles with
much more than 30 candidates. The tutorial on ranking (page 72) provides more adequate
and efficient techniques for ranking from pairwise majority margins when a larger number
of potential candidates is given.

Back to Content Table (page 1)

16 Discrete random variables with a given empirical probability law (here the polls) are provided in
the randomNumbers module by the DiscreteRandomVariable class.

71

2.4 Ranking with multiple incommensurable criteria

� The ranking problem (page 72)

� The Copeland ranking (page 75)

� The NetFlows ranking (page 78)

� Kemeny rankings (page 79)

� Slater rankings (page 83)

� Kohler’s ranking-by-choosing rule (page 85)

� Tideman’s ranked-pairs rule (page 87)

The ranking problem

We need to rank without ties a set X of items (usually decision alternatives) that are
evaluated on multiple incommensurable performance criteria; yet, for which we may know
their pairwise bipolar-valued strict outranking characteristics, i.e. 𝑟(𝑥 ⋩ 𝑦) for all x, y
in X (see The strict outranking digraph (page 30) and [BIS-2013]).

Let us consider a didactic outranking digraph g generated from a random Cost-Benefit
performance tableau (page 35) concerning 9 decision alternatives evaluated on 13 per-
formance criteria. We may compute the corresponding strict outranking digraph with a
codual transform (page 18) as follows.

Listing 2.24: Random bipolar-valued strict outranking
relation characteristics

1 >>> from outrankingDigraphs import *

2 >>> t = RandomCBPerformanceTableau(numberOfActions=9,

3 ... numberOfCriteria=13,seed=200)

4

5 >>> g = BipolarOutrankingDigraph(t,Normalized=True)

6 >>> gcd = ~(-g) # codual digraph

7 >>> gcd.showRelationTable(ReflexiveTerms=False)

8 * ---- Relation Table -----

9 r(>) | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7' 'a8' 'a9'

10 -----|--

11 'a1' | - 0.00 +0.10 -1.00 -0.13 -0.57 -0.23 +0.10 +0.00

12 'a2' | -1.00 - 0.00 +0.00 -0.37 -0.42 -0.28 -0.32 -0.12

13 'a3' | -0.10 0.00 - -0.17 -0.35 -0.30 -0.17 -0.17 +0.00

14 'a4' | 0.00 0.00 -0.42 - -0.40 -0.20 -0.60 -0.27 -0.30

15 'a5' | +0.13 +0.22 +0.10 +0.40 - +0.03 +0.40 -0.03 -0.07

16 'a6' | -0.07 -0.22 +0.20 +0.20 -0.37 - +0.10 -0.03 -0.07

17 'a7' | -0.20 +0.28 -0.03 -0.07 -0.40 -0.10 - +0.27 +1.00

(continues on next page)

72

(continued from previous page)

18 'a8' | -0.10 -0.02 -0.23 -0.13 -0.37 +0.03 -0.27 - +0.03

19 'a9' | 0.00 +0.12 -1.00 -0.13 -0.03 -0.03 -1.00 -0.03 -

Some ranking rules will work on the associated Condorcet Digraph, i.e. the corre-
sponding strict median cut polarised digraph.

Listing 2.25: Median cut polarised strict outranking re-
lation characteristics

1 >>> ccd = PolarisedOutrankingDigraph(gcd,

2 ... level=g.valuationdomain['med'],

3 ... KeepValues=False,StrictCut=True)

4

5 >>> ccd.showRelationTable(ReflexiveTerms=False,IntegerValues=True)

6 *---- Relation Table -----

7 r(>)_med | 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7' 'a8' 'a9'

8 ---------|---

9 'a1' | - 0 +1 -1 -1 -1 -1 +1 0

10 'a2' | -1 - +0 0 -1 -1 -1 -1 -1

11 'a3' | -1 0 - -1 -1 -1 -1 -1 0

12 'a4' | 0 0 -1 - -1 -1 -1 -1 -1

13 'a5' | +1 +1 +1 +1 - +1 +1 -1 -1

14 'a6' | -1 -1 +1 +1 -1 - +1 -1 -1

15 'a7' | -1 +1 -1 -1 -1 -1 - +1 +1

16 'a8' | -1 -1 -1 -1 -1 +1 -1 - +1

17 'a9' | 0 +1 -1 -1 -1 -1 -1 -1 -

Unfortunately, such crisp median-cut Condorcet digraphs, associated with a given strict
outranking digraph, present only exceptionally a linear ordering. Usually, pairwise ma-
jority comparisons do not even render a complete or, at least, a transitive partial order.
There may even frequently appear cyclic outranking situations (see the tutorial on linear
voting profiles (page 59)).

To estimate how difficult this ranking problem here may be, we may have a look at the
corresponding strict outranking digraph graphviz drawing (Page 7, 1).

1 >>> gcd.exportGraphViz('rankingTutorial')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to rankingTutorial.dot

4 dot -Grankdir=BT -Tpng rankingTutorial.dot -o rankingTutorial.png

73

Fig. 2.10: The strict outranking digraph

The strict outranking relation ⋩ shown here is apparently not transitive: for instance,
alternative a8 outranks alternative a6 and alternative a6 outranks a4, however a8 does
not outrank a4 (see Fig. 2.10). We may compute the transitivity degree of the outranking
digraph, i.e. the ratio of the difference between the number of outranking arcs and the
number of transitive arcs over the difference of the number of arcs of the transitive closure
minus the transitive arcs of the digraph gcd.

>>> gcd.computeTransitivityDegree(Comments=True)

Transitivity degree of graph <codual_rel_randomCBperftab>

#triples x>y>z: 78, #closed: 38, #open: 40

#closed/#triples = 0.487

With only 35% of the required transitive arcs, the strict outranking relation here is hence
very far from being transitive; a serious problem when a linear ordering of the decision
alternatives is looked for. Let us furthermore see if there are any cyclic outrankings.

74

1 >>> gcd.computeChordlessCircuits()

2 >>> gcd.showChordlessCircuits()

3 1 circuit(s).

4 *---- Chordless circuits ----*

5 1: ['a6', 'a7', 'a8'] , credibility : 0.033

There is one chordless circuit detected in the given strict outranking digraph gcd, namely
a6 outranks a7, the latter outranks a8, and a8 outranks again a6 (see Fig. 2.10). Any po-
tential linear ordering of these three alternatives will, in fact, always contradict somehow
the given outranking relation.

Now, several heuristic ranking rules have been proposed for constructing a linear ordering
which is closest in some specific sense to a given outranking relation.

The Digraph3 resources provide some of the most common of these ranking rules, like
Copeland ’s, Kemeny ’s, Slater ’s, Kohler ’s, Arrow-Raynaud ’s or Tideman’s ranking rule.

The Copeland ranking

Copeland ’s rule, the most intuitive one as it works well for any strict outranking relation
which models in fact a linear order, works on themedian cut strict outranking digraph ccd.
The rule computes for each alternative a score resulting from the sum of the differences
between the crisp strict outranking characteristics 𝑟(𝑥 ⋩ 𝑦)>0 and the crisp strict
outranked characteristics 𝑟(𝑦 ⋩ 𝑥)>0 for all pairs of alternatives where y is different
from x. The alternatives are ranked in decreasing order of these Copeland scores; ties,
the case given, being resolved by a lexicographical rule.

Listing 2.26: Computing a Copeland Ranking

1 >>> from linearOrders import CopelandRanking

2 >>> cop = CopelandRanking(gcd,Comments=True)

3 Copeland decreasing scores

4 a5 : 12

5 a1 : 2

6 a6 : 2

7 a7 : 2

8 a8 : 0

9 a4 : -3

10 a9 : -3

11 a3 : -5

12 a2 : -7

13 Copeland Ranking:

14 ['a5', 'a1', 'a6', 'a7', 'a8', 'a4', 'a9', 'a3', 'a2']

Alternative a5 obtains here the best Copeland score (+12), followed by alternatives a1,
a6 and a7 with same score (+2); following the lexicographic rule, a1 is hence ranked
before a6 and a6 before a7. Same situation is observed for a4 and a9 with a score of -3
(see Listing 2.26 Lines 4-12).

75

Copeland ’s ranking rule appears in fact invariant under the codual transform (page 18)
and renders a same linear order indifferently from digraphs g or gcd . The resulting
ranking (see Listing 2.26 Line 14) is rather correlated (+0.463) with the given pairwise
outranking relation in the ordinal Kendall sense (see Listing 2.27).

Listing 2.27: Checking the quality of the Copeland Rank-
ing

1 >>> corr = g.computeRankingCorrelation(cop.copelandRanking)

2 >>> g.showCorrelation(corr)

3 Correlation indexes:

4 Crisp ordinal correlation : +0.463

5 Valued equivalalence : +0.107

6 Epistemic determination : 0.230

With an epistemic determination level of 0.230, the extended Kendall tau index (see
[BIS-2012]) is in fact computed on 61.5% (100.0 x (1.0 + 0.23)/2) of the pairwise strict
outranking comparisons. Furthermore, the bipolar-valued relational equivalence charac-
teristics between the strict outranking relation and the Copeland ranking equals +0.107,
i.e. a majority of 55.35% of the criteria significance supports the relational equivalence
between the given strict outranking relation and the corresponding Copeland ranking.

The Copeland scores deliver actually only a unique weak ranking, i.e. a ranking with
potential ties. This weak ranking may be constructed with the WeakCopelandOrder

class.

Listing 2.28: Computing a weak Copeland ranking

1 >>> from transitiveDigraphs import WeakCopelandOrder

2 >>> wcop = WeakCopelandOrder(g)

3 >>> wcop.showRankingByChoosing()

4 Ranking by Choosing and Rejecting

5 1st ranked ['a5']

6 2nd ranked ['a1', 'a6', 'a7']

7 3rd ranked ['a8']

8 3rd last ranked ['a4', 'a9']

9 2nd last ranked ['a3']

10 1st last ranked ['a2']

We recover in Listing 2.28 above, the ranking with ties delivered by the Copeland scores
(see Listing 2.26). We may draw its corresponding Hasse diagram (see Listing 2.29).

Listing 2.29: Drawing a weak Copeland ranking

1 >>> wcop.exportGraphViz(fileName='weakCopelandRanking')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to weakCopelandRanking.dot

4 0 { rank = same; a5; }

5 1 { rank = same; a1; a7; a6; }

(continues on next page)

76

(continued from previous page)

6 2 { rank = same; a8; }

7 3 { rank = same; a4; a9}

8 4 { rank = same; a3; }

9 5 { rank = same; a2; }

10 dot -Grankdir=TB -Tpng weakCopelandRanking.dot\

11 -o weakCopelandRanking.png

Fig. 2.11: A weak Copeland ranking

Let us now consider a similar ranking rule, but working directly on the bipolar-valued
outranking digraph.

77

The NetFlows ranking

The valued version of the Copeland rule, called NetFlows rule, computes for each alter-
native x a net flow score, i.e. the sum of the differences between the strict outranking
characteristics 𝑟(𝑥 ⋩ 𝑦) and the strict outranked characteristics 𝑟(𝑦 ⋩ 𝑥) for all pairs
of alternatives where y is different from x.

Listing 2.30: Computing a NetFlows ranking

1 :linenos:

2

3 >>> from linearOrders import NetFlowsRanking

4 >>> nf = NetFlowsRanking(gcd,Comments=True)

5 Net Flows :

6 a5 : 3.600

7 a7 : 2.800

8 a6 : 1.300

9 a3 : 0.033

10 a1 : -0.400

11 a8 : -0.567

12 a4 : -1.283

13 a9 : -2.600

14 a2 : -2.883

15 NetFlows Ranking:

16 ['a5', 'a7', 'a6', 'a3', 'a1', 'a8', 'a4', 'a9', 'a2']

17 >>> cop.copelandRanking

18 ['a5', 'a1', 'a6', 'a7', 'a8', 'a4', 'a9', 'a3', 'a2']

It is worthwhile noticing again, that similar to the Copeland ranking rule seen before,
the NetFlows ranking rule is also invariant under the codual transform (page 18) and
delivers again the same ranking result indifferently from digraphs g or gcd (see Listing
2.30 Line 14).

In our example here, the NetFlows scores deliver a ranking without ties which is rather
different from the one delivered by Copeland ’s rule (see Listing 2.30 Line 16). It may
happen, however, that we obtain, as with the Copeland scores above, only a ranking with
ties, which may then be resolved again by following a lexicographic rule. In such cases, it
is possible to construct again a weak ranking with the corresponding WeakNetFlowsOrder
class.

The NetFlows ranking result appears to be slightly better correlated (+0.638) with the
given outranking relation than its crisp cousin, the Copeland ranking (see Listing 2.27
Lines 4-6).

Listing 2.31: Checking the quality of the NetFlows Rank-
ing

1 >>> corr = gcd.computeOrdinalCorrelation(nf)

2 >>> gcd.showCorrelation(corr)

(continues on next page)

78

(continued from previous page)

3 Correlation indexes:

4 Extended Kendall tau : +0.638

5 Epistemic determination : 0.230

6 Bipolar-valued equivalence : +0.147

Indeed, the extended Kendall tau index of +0.638 leads to a bipolar-valued relational
equivalence characteristics of +0.147, i.e. a majority of 57.35% of the criteria significance
supports the relational equivalence between the given outranking digraphs g or gcd and
the corresponding NetFlows ranking. This lesser ranking performance of the Copeland
rule stems in this example essentially from the weakness of the actual ranking result and
our subsequent arbitrary lexicographic resolution of the many ties given by the Copeland
scores (see Fig. 2.11).

To appreciate now the more or less correlation of both the Copeland and the NetFlows
rankings with the underlying pairwise outranking relation, it is useful to consider Ke-
meny ’s and Slater ’s best fitting ranking rules.

Kemeny rankings

A Kemeny ranking is a linear ranking without ties which is closest, in the sense of the
ordinal Kendall distance (see [BIS-2012]), to the given valued outranking digraphs g or
gcd. This rule is also invariant under the codual transform.

Listing 2.32: Computing a Kemeny ranking

1 >>> from linearOrders import KemenyRanking

2 >>> ke = KemenyRanking(gcd,orderLimit=9) # default orderLimit is 7

3 >>> ke.showRanking()

4 ['a5', 'a6', 'a7', 'a3', 'a9', 'a4', 'a1', 'a8', 'a2']

5 >>> corr = gcd.computeOrdinalCorrelation(ke)

6 >>> gcd.showCorrelation(corr)

7 Correlation indexes:

8 Extended Kendall tau : +0.779

9 Epistemic determination : 0.230

10 Bipolar-valued equivalence : +0.179

So, +0.779 represents the highest possible ordinal correlation (fitness) any potential
linear ranking can achieve with the given pairwise outranking digraph (see Listing 2.32
Lines 7-10).

A Kemeny ranking may not be unique. In our example here, we obtain in fact two
Kemeny rankings with a same maximal Kemeny index of 12.9.

Listing 2.33: Optimal Kemeny rankings

1 >>> ke.maximalRankings

2 [['a5', 'a6', 'a7', 'a3', 'a8', 'a9', 'a4', 'a1', 'a2'],

(continues on next page)

79

(continued from previous page)

3 ['a5', 'a6', 'a7', 'a3', 'a9', 'a4', 'a1', 'a8', 'a2']]

4 >>> ke.maxKemenyIndex

5 Decimal('12.9166667')

We may visualize the partial order defined by the epistemic disjunction (page 17) of both
optimal Kemeny rankings by using the RankingsFusion class as follows.

Listing 2.34: Computing the epistemic disjunction of all
optimal Kemeny rankings

1 >>> from transitiveDigraphs import RankingsFusion

2 >>> wke = RankingsFusion(ke,ke.maximalRankings)

3 >>> wke.exportGraphViz(fileName='tutorialKemeny')

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to tutorialKemeny.dot

6 0 { rank = same; a5; }

7 1 { rank = same; a6; }

8 2 { rank = same; a7; }

9 3 { rank = same; a3; }

10 4 { rank = same; a9; a8; }

11 5 { rank = same; a4; }

12 6 { rank = same; a1; }

13 7 { rank = same; a2; }

14 dot -Grankdir=TB -Tpng tutorialKemeny.dot -o tutorialKemeny.png

80

Fig. 2.12: Epistemic disjunction of optimal Kemeny rankings

It is interesting to notice in Fig. 2.12 and Listing 2.33, that both Kemeny rankings only
differ in their respective positioning of alternative a8 ; either before or after alternatives
a9, a4 and a1.

To choose now a specific representative among all the potential rankings with maximal
Kemeny index, we will choose, with the help of the showRankingConsensusQuality()

method, the most consensual one.

81

Listing 2.35: Computing Consensus Quality of Rankings

1 >>> g.showRankingConsensusQuality(ke.maximalRankings[0])

2 Consensus quality of ranking:

3 ['a5', 'a6', 'a7', 'a3', 'a8', 'a9', 'a4', 'a1', 'a2']

4 criterion (weight): correlation

5 -------------------------------

6 b09 (0.050): +0.361

7 b04 (0.050): +0.333

8 b08 (0.050): +0.292

9 b01 (0.050): +0.264

10 c01 (0.167): +0.250

11 b03 (0.050): +0.222

12 b07 (0.050): +0.194

13 b05 (0.050): +0.167

14 c02 (0.167): +0.000

15 b10 (0.050): +0.000

16 b02 (0.050): -0.042

17 b06 (0.050): -0.097

18 c03 (0.167): -0.167

19 Summary:

20 Weighted mean marginal correlation (a): +0.099

21 Standard deviation (b) : +0.177

22 Ranking fairness (a)-(b) : -0.079

23 >>> g.showRankingConsensusQuality(ke.maximalRankings[1])

24 Consensus quality of ranking:

25 ['a5', 'a6', 'a7', 'a3', 'a9', 'a4', 'a1', 'a8', 'a2']

26 criterion (weight): correlation

27 -------------------------------

28 b09 (0.050): +0.306

29 b08 (0.050): +0.236

30 c01 (0.167): +0.194

31 b07 (0.050): +0.194

32 c02 (0.167): +0.167

33 b04 (0.050): +0.167

34 b03 (0.050): +0.167

35 b01 (0.050): +0.153

36 b05 (0.050): +0.056

37 b02 (0.050): +0.014

38 b06 (0.050): -0.042

39 c03 (0.167): -0.111

40 b10 (0.050): -0.111

41 Summary:

42 Weighted mean marginal correlation (a): +0.099

43 Standard deviation (b) : +0.132

44 Ranking fairness (a)-(b) : -0.033

82

Both Kemeny rankings show the same weighted mean marginal correlation (+0.099, see
Listing 2.35 Lines 19-22, 42-44) with all thirteen performance criteria. However, the
second ranking shows a slightly lower standard deviation (+0.132 vs +0.177), resulting
in a slightly fairer ranking result (-0.033 vs -0.079).

When several rankings with maximal Kemeny index are given, the KemenyRanking class
constructor instantiates a most consensual one, i.e. a ranking with highest mean marginal
correlation and, in case of ties, with lowest weighted standard deviation. Here we obtain
ranking: [‘a5’, ‘a6’, ‘a7’, ‘a3’, ‘a9’, ‘a4’, ‘a1’, ‘a8’, ‘a2’] (see Listing 2.32 Line 4).

Slater rankings

The Slater ranking rule is identical to Kemeny ’s, but it is working, instead, on the
median cut polarised digraph. Slater ’s ranking rule is also invariant under the codual
transform and delivers again indifferently on g or gcd the following results.

Listing 2.36: Computing a Slater ranking

1 >>> from linearOrders import SlaterRanking

2 >>> sl = SlaterRanking(gcd,orderLimit=9)

3 >>> sl.slaterRanking

4 ['a5', 'a6', 'a4', 'a1', 'a3', 'a7', 'a8', 'a9', 'a2']

5 >>> corr = gcd.computeOrderCorrelation(sl.slaterRanking)

6 >>> sl.showCorrelation(corr)

7 Correlation indexes:

8 Extended Kendall tau : +0.676

9 Epistemic determination : 0.230

10 Bipolar-valued equivalence : +0.156

11 >>> len(sl.maximalRankings)

12 7

We notice in Listing 2.36 Line 7 that the first Slater ranking is a rather good fit (+0.676),
slightly better apparently than the NetFlows ranking result (+638). However, there
are in fact 7 such potentially optimal Slater rankings (see Listing 2.36 Line 11). The
corresponding epistemic disjunction (page 17) gives the following partial ordering.

Listing 2.37: Computing the epistemic disjunction of op-
timal Slater rankings

1 >>> slw = RankingsFusion(sl,sl.maximalRankings)

2 >>> slw.exportGraphViz(fileName='tutorialSlater')

3 *---- exporting a dot file for GraphViz tools ---------*

4 Exporting to tutorialSlater.dot

5 0 { rank = same; a5; }

6 1 { rank = same; a6; }

7 2 { rank = same; a7; a4; }

8 3 { rank = same; a1; }

9 4 { rank = same; a8; a3; }

(continues on next page)

83

(continued from previous page)

10 5 { rank = same; a9; }

11 6 { rank = same; a2; }

12 dot -Grankdir=TB -Tpng tutorialSlater.dot -o tutorialSlater.png

Fig. 2.13: Epistemic disjunction of optimal Slater rankings

What precise ranking result should we hence adopt? Kemeny ’s and Slater ’s ranking rules
are furthermore computationally difficult problems and effective ranking results are only
computable for tiny outranking digraphs (< 20 objects).

More efficient ranking heuristics, like the Copeland and the NetFlows rules, are therefore
needed in practice. Let us finally, after these ranking-by-scoring strategies, also present

84

two popular ranking-by-choosing strategies.

Kohler ’s ranking-by-choosing rule

Kohler’s ranking-by-choosing rule can be formulated like this.

At step i (i goes from 1 to n) do the following:

1. Compute for each row of the bipolar-valued strict outranking relation table (see
Listing 2.24) the smallest value;

2. Select the row where this minimum is maximal. Ties are resolved in lexicographic
order;

3. Put the selected decision alternative at rank i ;

4. Delete the corresponding row and column from the relation table and restart until
the table is empty.

Listing 2.38: Computing a Kohler ranking

1 >>> from linearOrders import KohlerRanking

2 >>> kocd = KohlerRanking(gcd)

3 >>> kocd.showRanking()

4 ['a5', 'a7', 'a6', 'a3', 'a9', 'a8', 'a4', 'a1', 'a2']

5 >>> corr = gcd.computeOrdinalCorrelation(kocd)

6 >>> gcd.showCorrelation(corr)

7 Correlation indexes:

8 Extended Kendall tau : +0.747

9 Epistemic determination : 0.230

10 Bipolar-valued equivalence : +0.172

With this min-max lexicographic ranking-by-choosing strategy, we find a correlation re-
sult (+0.747) that is until now clearly the nearest to an optimal Kemeny ranking (see
Listing 2.33). Only two adjacent pairs: [a6, a7] and [a8, a9] are actually inverted here.
Notice that Kohler ’s ranking rule, contrary to the previously mentioned rules, is not in-
variant under the codual transform and requires to work on the strict outranking digraph
gcd for a better correlation result.

1 >>> ko = KohlerRanking(g)

2 >>> corr = g.computeOrdinalCorrelation(ko)

3 >>> g.showCorrelation(corr)

4 Correlation indexes:

5 Crisp ordinal correlation : +0.483

6 Epistemic determination : 0.230

7 Bipolar-valued equivalence : +0.111

But Kohler ’s ranking has a dual version, the prudent Arrow-Raynaud ordering-by-
choosing rule, where a corresponding max-min strategy, when used on the non-strict
outranking digraph g, for ordering the from last to first produces a similar ranking result
(see [LAM-2009], [DIA-2010]).

85

Noticing that the NetFlows score of an alternative x represents in fact a bipolar-valued
characteristic of the assertion ‘alternative x is ranked first’, we may enhance Kohler ’s
or Arrow-Raynaud ’s rules by replacing the min-max, respectively the max-min, strategy
with an iterated maximal, respectively its dual minimal, Netflows score selection.

For a ranking (resp. an ordering) result, at step i (i goes from 1 to n) do the following:

1. Compute for each row of the bipolar-valued outranking relation table (see Listing
2.24) the corresponding net flow score (page 78) ;

2. Select the row where this score is maximal (resp. minimal); ties being resolved by
lexicographic order;

3. Put the corresponding decision alternative at rank (resp. order) i ;

4. Delete the corresponding row and column from the relation table and restart until
the table is empty.

A first advantage is that the so modified Kohler ’s and Arrow-Raynaud ’s rules become
invariant under the codual transform. And we may get both the ranking-by-choosing
as well as the ordering-by-choosing results with the IteratedNetFlowsRanking class
constructor (see Listing 2.39 Lines 12-13).

Listing 2.39: Ordering-by-choosing with iterated minimal
NetFlows scores

1 >>> from linearOrders import IteratedNetFlowsRanking

2 >>> inf = IteratedNetFlowsRanking(g)

3 >>> inf

4 *------- Digraph instance description ------*

5 Instance class : IteratedNetFlowsRanking

6 Instance name : rel_randomCBperftab_ranked

7 Digraph Order : 9

8 Digraph Size : 36

9 Valuation domain : [-1.00;1.00]

10 Determinateness (%) : 100.00

11 Attributes : ['valuedRanks', 'valuedOrdering',

12 'iteratedNetFlowsRanking',

13 'iteratedNetFlowsOrdering',

14 'name', 'actions', 'order',

15 'valuationdomain', 'relation',

16 'gamma', 'notGamma']

17 >>> inf.iteratedNetFlowsOrdering

18 ['a2', 'a9', 'a1', 'a4', 'a3', 'a8', 'a7', 'a6', 'a5']

19 >>> corr = g.computeOrderCorrelation(inf.iteratedNetFlowsOrdering)

20 >>> g.showCorrelation(corr)

21 Correlation indexes:

22 Crisp ordinal correlation : +0.751

23 Epistemic determination : 0.230

24 Bipolar-valued equivalence : +0.173

25 >>> inf.iteratedNetFlowsRanking
(continues on next page)

86

(continued from previous page)

26 ['a5', 'a7', 'a6', 'a3', 'a4', 'a1', 'a8', 'a9', 'a2']

27 >>> corr = g.computeRankingCorrelation(inf.iteratedNetFlowsRanking)

28 >>> g.showCorrelation(corr)

29 Correlation indexes:

30 Crisp ordinal correlation : +0.743

31 Epistemic determination : 0.230

32 Bipolar-valued equivalence : +0.171

The iterated NetFlows ranking and its dual, the iterated NetFlows ordering, do not
usually deliver both the same result (Listing 2.39 Lines 18 and 26). With our example
outranking digraph g for instance, it is the ordering-by-choosing result that obtains a
slightly better correlation with the given outranking digraph g (+0.751), a result that is
also slightly better than Kohler ’s original result (+0.747, see Listing 2.38 Line 8).

With different ranking-by-choosing and ordering-by-choosing results, it may be useful to
fuse now, similar to what we have done before with Kemeny ’s and Slaters ’s optimal
rankings (see Listing 2.34 and Listing 2.37), both, the iterated NetFlows ranking and
ordering into a partial ranking. But we are hence back to the practical problem of what
linear ranking should we eventually retain ?

Let us finally mention another interesting ranking-by-choosing approach.

Tideman’s ranked-pairs rule

Tideman’s ranking-by-choosing heuristic, the RankedPairs rule, working best this time
on the non strict outranking digraph g, is based on a prudent incremental construction
of linear orders that avoids on the fly any cycling outrankings (see [LAM-2009]). The
ranking rule may be formulated as follows:

1. Rank the ordered pairs (𝑥, 𝑦) of alternatives in decreasing order of 𝑟(𝑥 ≿ 𝑦) + 𝑟(𝑦 ̸≿
𝑥);

2. Consider the pairs in that order (ties are resolved by a lexicographic rule):

� if the next pair does not create a circuit with the pairs already blocked, block
this pair;

� if the next pair creates a circuit with the already blocked pairs, skip it.

With our didactic outranking digraph g, we get the following result.

Listing 2.40: Computing a RankedPairs ranking

1 >>> from linearOrders import RankedPairsRanking

2 >>> rp = RankedPairsRanking(g)

3 >>> rp.showRanking()

4 ['a5', 'a6', 'a7', 'a3', 'a8', 'a9', 'a4', 'a1', 'a2']

The RankedPairs ranking rule renders in our example here luckily one of the two optimal
Kemeny ranking, as we may verify below.

87

1 >>> ke.maximalRankings

2 [['a5', 'a6', 'a7', 'a3', 'a8', 'a9', 'a4', 'a1', 'a2'],

3 ['a5', 'a6', 'a7', 'a3', 'a9', 'a4', 'a1', 'a8', 'a2']]

4 >>> corr = g.computeOrdinalCorrelation(rp)

5 >>> g.showCorrelation(corr)

6 Correlation indexes:

7 Extended Kendall tau : +0.779

8 Epistemic determination : 0.230

9 Bipolar-valued equivalence : +0.179

Similar to Kohler ’s rule, the RankedPairs rule has also a prudent dual version, the Dias-
Lamboray ordering-by-choosing rule, which produces, when working this time on the co-
dual strict outranking digraph gcd, a similar ranking result (see [LAM-2009], [DIA-2010]).

Besides of not providing a unique linear ranking, the ranking-by-choosing rules, as well
as their dual ordering-by-choosing rules, are unfortunately not scalable to outranking
digraphs of larger orders (> 100). For such bigger outranking digraphs, with several
hundred or thousands of alternatives, only the Copeland, the NetFlows ranking-by-scoring
rules, with a polynomial complexity of 𝑂(𝑛2), where n is the order of the outranking
digraph, remain in fact computationally tractable.

Back to Content Table (page 1)

2.5 Computing a first choice recommendation

� What site to choose ? (page 89)

� The performance tableau (page 91)

� The outranking digraph (page 93)

� The Rubis best choice recommendation (page 95)

� Computing strict best choice recommendations (page 97)

� Weakly ordering the outranking digraph (page 100)

See also:

Lecture 7 notes from the MICS Algorithmic Decision Theory course: [ADT-L7].

88

What site to choose ?

A SME, specialized in printing and copy services, has to move into new offices, and its
CEO has gathered seven potential office sites (see Table 2.1).

Table 2.1: The potential new office sites

ID Name Address Comment

A Ave Avenue de la liberté High standing city center
B Bon Bonnevoie Industrial environment
C Ces Cessange Residential suburb location
D Dom Dommeldange Industrial suburb environment
E Bel Esch-Belval New and ambitious urbanization far from the city
F Fen Fentange Out in the countryside
G Gar Avenue de la Gare Main city shopping street

Three decision objectives are guiding the CEO’s choice:

1. minimize the yearly costs induced by the moving,

2. maximize the future turnover of the SME,

3. maximize the new working conditions.

The decision consequences to take into account for evaluating the potential new office
sites with respect to each of the three objectives are modelled by the following coherent
family of criteria26.

Table 2.2: The coherent family of performance criteria

Objective ID Name Comment

Yearly costs C Costs Annual rent, charges, and cleaning

Future turnover St Standing Image and presentation
Future turnover V Visibility Circulation of potential customers
Future turnover Pr Proximity Distance from town center

Working conditions W Space Working space
Working conditions Cf Comfort Quality of office equipment
Working conditions P Parking Available parking facilities

26 A coherent family of performance criteria verifies: a) Exhaustiveness: No argument acceptable to all
stakeholders can be put forward to justify a preference in favour of action x versus action y when x and
y have the same performance level on each of the criteria of the family; b) Cohesiveness: Stakeholders
unanimously recognize that action x must be preferred to action y whenever the performance level of
x is significantly better than that of x on one of the criteria of positive weight, performance levels of x
and y being the same on each of the other criteria; c) Nonredundancy : One of the above requirements is
violated if one of the criteria is left out from the family. Source: European Working Group “Multicriteria

Aid for Decisions” Series 3, no1, Spring, 2000.

89

The evaluation of the seven potential sites on each criterion are gathered in the following
performance tableau.

Table 2.3: Performance evaluations of the potential office
sites

Criterion weight A B C D E F G

Costs 45.0 35.0K¿ 17.8K¿ 6.7K¿ 14.1K¿ 34.8K¿ 18.6K¿ 12.0K¿

Prox 32.0 100 20 80 70 40 0 60
Visi 26.0 60 80 70 50 60 0 100
Stan 23.0 100 10 0 30 90 70 20

Wksp 10.0 75 30 0 55 100 0 50
Wkcf 6.0 0 100 10 30 60 80 50
Park 3.0 90 30 100 90 70 0 80

Except the Costs criterion, all other criteria admit for grading a qualitative satisfaction
scale from 0% (worst) to 100% (best). We may thus notice in Table 2.3 that site A is the
most expensive, but also 100% satisfying the Proximity as well as the Standing criterion.
Whereas the site C is the cheapest one; providing however no satisfaction at all on both
the Standing and the Working Space criteria.

In Table 2.3 we may also see that the Costs criterion admits the highest significance
(45.0), followed by the Future turnover criteria (32.0 + 26.0 + 23.0 = 81.0), TheWorking
conditions criteria are the less significant (10.0 + 6.0, + 3.0 = 19.0). It follows that
the CEO considers maximizing the future turnover the most important objective (81.0),
followed by theminizing yearly Costs objective (45.0), and less important, themaximizing
working conditions objective (19.0).

Concerning yearly costs, we suppose that the CEO is indifferent up to a performance
difference of 1000¿, and he actually prefers a site if there is at least a positive difference
of 2500¿. The grades observed on the six qualitative criteria (measured in percentages
of satisfaction) are very subjective and rather imprecise. The CEO is hence indifferent
up to a satisfaction difference of 10%, and he claims a significant preference when the
satisfaction difference is at least of 20%. Furthermore, a satisfaction difference of 80%
represents for him a considerably large performance difference, triggering a veto situation
the case given (see [BIS-2013]).

In view of Table 2.3, what is now the office site we may recommend to the CEO as best
choice ?

90

The performance tableau

A Python encoded performance tableau is available for downloading here officeChoice.py.

We may inspect the performance tableau data with the computing resources provided by
the perfTabs module.

1 >>> from perfTabs import *

2 >>> t = PerformanceTableau('officeChoice')

3 >>> t

4 *------- PerformanceTableau instance description ------*

5 Instance class : PerformanceTableau

6 Instance name : officeChoice

7 # Actions : 7

8 # Objectives : 3

9 # Criteria : 7

10 NaN proportion (%) : 0.0

11 Attributes : ['name', 'actions', 'objectives',

12 'criteria', 'weightPreorder',

13 'NA', 'evaluation']

14 >>> t.showPerformanceTableau()

15 *---- performance tableau -----*

16 Criteria | 'C' 'Cf' 'P' 'Pr' 'St' 'V' 'W'

17 Weights | 45.00 6.00 3.00 32.00 23.00 26.00 10.00

18 ---------|---

19 'Ave' | -35000.00 0.00 90.00 100.00 100.00 60.00 75.00

20 'Bon' | -17800.00 100.00 30.00 20.00 10.00 80.00 30.00

21 'Ces' | -6700.00 10.00 100.00 80.00 0.00 70.00 0.00

22 'Dom' | -14100.00 30.00 90.00 70.00 30.00 50.00 55.00

23 'Bel' | -34800.00 60.00 70.00 40.00 90.00 60.00 100.00

24 'Fen' | -18600.00 80.00 0.00 0.00 70.00 0.00 0.00

25 'Gar' | -12000.00 50.00 80.00 60.00 20.00 100.00 50.00

We thus recover all the input data. To measure the actual preference discrimination we
observe on each criterion, we may use the showCriteria() method.

1 >>> t.showCriteria(IntegerWeights=True)

2 *---- criteria -----*

3 C 'Costs'

4 Scale = (Decimal('0.00'), Decimal('50000.00'))

5 Weight = 45

6 Threshold ind : 1000.00 + 0.00x ; percentile: 9.5

7 Threshold pref : 2500.00 + 0.00x ; percentile: 14.3

8 Cf 'Comfort'

9 Scale = (Decimal('0.00'), Decimal('100.00'))

10 Weight = 6

11 Threshold ind : 10.00 + 0.00x ; percentile: 9.5

(continues on next page)

91

_static/officeChoice.py

(continued from previous page)

12 Threshold pref : 20.00 + 0.00x ; percentile: 28.6

13 Threshold veto : 80.00 + 0.00x ; percentile: 90.5

14 ...

On the Costs criterion, 9.5% of the performance differences are considered insignificant
and 14.3% below the preference discrimination threshold (lines 6-7). On the qualitative
Comfort criterion, we observe again 9.5% of insignificant performance differences (line
11). Due to the imprecision in the subjective grading, we notice here 28.6% of performance
differences below the preference discrimination threshold (Line 12). Furthermore, 100.0 -
90.5 = 9.5% of the performance differences are judged considerably large (Line 13); 80%
and more of satisfaction differences triggering in fact a veto situation. Same information
is available for all the other criteria.

A colorful comparison of all the performances is shown on Fig. 2.14 by the heatmap
statistics, illustrating the respective quantile class of each performance. As the set of
potential alternatives is tiny, we choose here a classification into performance quintiles.

>>> t.showHTMLPerformanceHeatmap(colorLevels=5,

... rankingRule=None)

Fig. 2.14: Unranked heatmap of the office choice performance tableau

Site Ave shows extreme and contradictory performances: highest Costs and no Working
Comfort on one hand, and total satisfaction with respect to Standing, Proximity and
Parking facilities on the other hand. Similar, but opposite, situation is given for site Ces :
unsatisfactoryWorking Space, no Standing and noWorking Comfort on the one hand, and
lowest Costs, best Proximity and Parking facilities on the other hand. Contrary to these
contradictory alternatives, we observe two appealing compromise decision alternatives:
sites Dom and Gar. Finally, site Fen is clearly the less satisfactory alternative of all.

92

The outranking digraph

To help now the CEO choosing the best site, we are going to compute pairwise outrankings
(see [BIS-2013]) on the set of potential sites. For two sites x and y, the situation “x
outranks y”, denoted (x S y), is given if there is:

1. a significant majority of criteria concordantly supporting that site x is at least
as satisfactory as site y, and

2. no considerable counter-performance observed on any discordant criterion.

The credibility of each pairwise outranking situation (see [BIS-2013]), denoted r(x S y), is
measured in a bipolar significance valuation [-1.00, 1.00], where positive terms r(x S y) >
0.0 indicate a validated, and negative terms r(x S y) < 0.0 indicate a non-validated
outrankings; whereas the median value r(x S y) = 0.0 represents an indeterminate
situation (see [BIS-2004a]).

For computing such a bipolar-valued outranking digraph from the given performance
tableau t, we use the BipolarOutrankingDigraph constructor from the outrankingDi-
graphs module. The showHTMLRelationTable method shows here the resulting bipolar-
valued adjacency matrix in a system browser window (see Fig. 2.15).

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> g = BipolarOutrankingDigraph(t)

3 >>> g.showHTMLRelationTable()

Fig. 2.15: The office choice outranking digraph

In Fig. 2.15 we may notice that Alternative D is positively outranking all other po-
tential office sites (a Condorcet winner). Yet, alternatives A (the most expensive) and
C (the cheapest) are not outranked by any other site; they are in fact weak Condorcet
winners.

93

1 >>> g.computeCondorcetWinners()

2 ['D']

3 >>> g.computeWeakCondorcetWinners()

4 ['A', 'C', 'D']

We may get even more insight in the apparent outranking situations when looking at the
Condorcet digraph (see Fig. 2.16).

1 >>> g.exportGraphViz('officeChoice')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to officeChoice.dot

4 dot -Grankdir=BT -Tpng officeChoice.dot -o officeChoice.png

Fig. 2.16: The office choice outranking digraph

One may check that the outranking digraph g does not admit in fact any cyclic strict
preference situation.

1 >>> g.computeChordlessCircuits()

2 []

3 >>> g.showChordlessCircuits()

4 No circuits observed in this digraph.

94

The Rubis best choice recommendation

Following the Rubis outranking method (see [BIS-2008]), potential first choice recommen-
dations are determined by the outranking prekernels –weakly independent and strictly
outranking choices– of the outranking digraph (see the tutorial on computing digraph
kernels). The case given, we previously need to break open all chordless odd circuits at
their weakest link.

1 >>> from digraphs import BrokenCocsDigraph

2 >>> bcg = BrokenCocsDigraph(g)

3 >>> bcg.brokenLinks

4 set()

As we observe indeed no such chordless circuits here, we may directly compute the prek-
ernels of the outranking digraph g.

Listing 2.41: Computing outranking and outranked prek-
ernels

1 >>> g.showPreKernels()

2 *--- Computing preKernels ---*

3 Dominant preKernels :

4 ['D']

5 independence : 1.0

6 dominance : 0.02

7 absorbency : -1.0

8 covering : 1.000

9 ['B', 'E', 'C']

10 independence : 0.00

11 dominance : 0.10

12 absorbency : -1.0

13 covering : 0.500

14 ['A', 'G']

15 independence : 0.00

16 dominance : 0.78

17 absorbency : 0.00

18 covering : 0.700

19 Absorbent preKernels :

20 ['F', 'A']

21 independence : 0.00

22 dominance : 0.00

23 absorbency : 1.0

24 covering : 0.700

25 *----- statistics -----

26 graph name: rel_officeChoice.xml

27 number of solutions

28 dominant kernels : 3

29 absorbent kernels: 1

(continues on next page)

95

(continued from previous page)

30 cardinality frequency distributions

31 cardinality : [0, 1, 2, 3, 4, 5, 6, 7]

32 dominant kernel : [0, 1, 1, 1, 0, 0, 0, 0]

33 absorbent kernel: [0, 0, 1, 0, 0, 0, 0, 0]

34 Execution time : 0.00018 sec.

35 Results in sets: dompreKernels and abspreKernels.

We notice in Listing 2.41 three potential first choice recommendations: the Condorcet
winner D (Line 4), the triplet B, C and E (Line 9), and finally the pair A and G (Line
14). The best choice recommendation is now given by the most determined prekernel;
the one supported by the most significant criteria coalition. This result is shown with the
showBestChoiceRecommendation() method. Notice that this method actually works by
default on the broken chords digraph bcg.

Listing 2.42: Computing a best choice recommendation

1 >>> g.showBestChoiceRecommendation(CoDual=False)

2 ***

3 Rubis best choice recommendation(s) (BCR)

4 (in decreasing order of determinateness)

5 Credibility domain: [-1.00,1.00]

6 === >> potential first choice(s)

7 * choice : ['D']

8 independence : 1.00

9 dominance : 0.02

10 absorbency : -1.00

11 covering (%) : 100.00

12 determinateness (%) : 51.03

13 - most credible action(s) = { 'D': 0.02, }

14 === >> potential first choice(s)

15 * choice : ['A', 'G']

16 independence : 0.00

17 dominance : 0.78

18 absorbency : 0.00

19 covering (%) : 70.00

20 determinateness (%) : 50.00

21 - most credible action(s) = { }

22 === >> potential first choice(s)

23 * choice : ['B', 'C', 'E']

24 independence : 0.00

25 dominance : 0.10

26 absorbency : -1.00

27 covering (%) : 50.00

28 determinateness (%) : 50.00

29 - most credible action(s) = { }

30 === >> potential last choice(s)

(continues on next page)

96

(continued from previous page)

31 * choice : ['A', 'F']

32 independence : 0.00

33 dominance : 0.00

34 absorbency : 1.00

35 covered (%) : 70.00

36 determinateness (%) : 50.00

37 - most credible action(s) = { }

38 Execution time: 0.014 seconds

We notice in Listing 2.42 (Line 7) above that the most significantly supported best choice
recommendation is indeed the Condorcet winner D supported by a majority of 51.03% of
the criteria significance (see Line 12). Both other potential first choice recommendations,
as well as the potential last choice recommendation, are not positively validated as best,
resp. worst choices. They may or may not be considered so. Alternative A, with extreme
contradictory performances, appears both, in a first and a last choice recommendation
(see Lines 15 and 31) and seams hence not actually comparable to its competitors.

Computing strict best choice recommendations

When comparing now the performances of alternatives D and G on a pairwise perspective
(see below), we notice that, with the given preference discrimination thresholds, alter-
native G is actually certainly at least as good as alternative D : r(G outranks D) =
+145/145 = +1.0.

1 >>> g.showPairwiseComparison('G','D')

2 *------------ pairwise comparison ----*

3 Comparing actions : (G, D)

4 crit. wght. g(x) g(y) diff. | ind pref concord |

5 ␣

→˓===

6 C 45.00 -12000.00 -14100.00 +2100.00 | 1000.00 2500.00 +45.00 |

7 Cf 6.00 50.00 30.00 +20.00 | 10.00 20.00 +6.00 |

8 P 3.00 80.00 90.00 -10.00 | 10.00 20.00 +3.00 |

9 Pr 32.00 60.00 70.00 -10.00 | 10.00 20.00 +32.00 |

10 St 23.00 20.00 30.00 -10.00 | 10.00 20.00 +23.00 |

11 V 26.00 100.00 50.00 +50.00 | 10.00 20.00 +26.00 |

12 W 10.00 50.00 55.00 -5.00 | 10.00 20.00 +10.00 |

13 ␣

→˓===

14 Valuation in range: -145.00 to +145.00; global concordance: +145.00

However, we must as well notice that the cheapest alternative C is in fact strictly
outranking alternative G : r(C outranks G) = +15/145 > 0.0, and r(G outranks C) =
-15/145 < 0.0.

97

1 >>> g.showPairwiseComparison('C','G')

2 *------------ pairwise comparison ----*

3 Comparing actions : (C, G)/(G, C)

4 crit. wght. g(x) g(y) diff. | ind. pref. (C,G)/(G,C)␣

→˓ |

5 ␣

→˓==

6 C 45.00 -6700.00 -12000.00 +5300.00 | 1000.00 2500.00 +45.00/-45.

→˓00 |

7 Cf 6.00 10.00 50.00 -40.00 | 10.00 20.00 -6.00/ +6.

→˓00 |

8 P 3.00 100.00 80.00 +20.00 | 10.00 20.00 +3.00/ -3.

→˓00 |

9 Pr 32.00 80.00 60.00 +20.00 | 10.00 20.00 +32.00/-32.

→˓00 |

10 St 23.00 0.00 20.00 -20.00 | 10.00 20.00 -23.00/+23.

→˓00 |

11 V 26.00 70.00 100.00 -30.00 | 10.00 20.00 -26.00/+26.

→˓00 |

12 W 10.00 0.00 50.00 -50.00 | 10.00 20.00 -10.00/+10.

→˓00 |

13 ␣

→˓===

14 Valuation in range: -145.00 to +145.00; global concordance: +15.00/-15.

→˓00

To model these strict outranking situations, we may recompute the best choice recom-
mendation on the codual, the converse (~) of the dual (-)Page 18, 14, of the outranking
digraph instance g (see [BIS-2013]), as follows.

Listing 2.43: Computing the strict best choice recom-
mendation

1 >>> g.showBestChoiceRecommendation(

2 ... CoDual=True,

3 ... ChoiceVector=True)

4

5 * --- First and last choice recommendation(s) ---*

6 (in decreasing order of determinateness)

7 Credibility domain: [-1.00,1.00]

8 === >> potential first choice(s)

9 * choice : ['A', 'C', 'D']

10 independence : 0.00

11 dominance : 0.10

12 absorbency : 0.00

13 covering (%) : 41.67

14 determinateness (%) : 50.59

(continues on next page)

98

(continued from previous page)

15 - characteristic vector = { 'D': 0.02, 'G': 0.00, 'C': 0.00,

16 'A': 0.00, 'F': -0.02, 'E': -0.02,

17 'B': -0.02, }

18 === >> potential last choice(s)

19 * choice : ['A', 'F']

20 independence : 0.00

21 dominance : -0.52

22 absorbency : 1.00

23 covered (%) : 50.00

24 determinateness (%) : 50.00

25 - characteristic vector = { 'G': 0.00, 'F': 0.00, 'E': 0.00,

26 'D': 0.00, 'C': 0.00, 'B': 0.00,

27 'A': 0.00, }

It is interesting to notice in Listing 2.43 (Line 9) that the strict best choice recom-
mendation consists in the set of weak Condorcet winners: ‘A’, ‘C’ and ‘D’. In the corre-
sponding characteristic vector (see Line 15-17), representing the bipolar credibility degree
with which each alternative may indeed be considered a best choice (see [BIS-2006a],
[BIS-2006b]), we find confirmed that alternative D is the only positively validated one,
whereas both extreme alternatives - A (the most expensive) and C (the cheapest) - stay
in an indeterminate situation. They may be potential first choice candidates besides
D. Notice furthermore that compromise alternative G, while not actually included in an
outranking prekernel, shows as well an indeterminate situation with respect to being or
not being a potential first choice candidate.

We may also notice (see Line 17 and Line 21) that both alternatives A and F are reported
as certainly strict outranked choices, hence as potential last choice recommendation
. This confirms again the global incomparability status of alternative A (see Fig. 2.17).

1 >>> gcd = ~(-g) # codual of g

2 >>> gcd.exportGraphViz(fileName='bestChoiceChoice',

3 ... fistChoice=['A','C','D'],

4 ... lastChoice=['F'])

5 *---- exporting a dot file for GraphViz tools ---------*

6 Exporting to bestOfficeChoice.dot

7 dot -Grankdir=BT -Tpng bestOfficeChoice.dot -o bestOfficeChoice.png

99

Fig. 2.17: Best office choice recommendation from strict outranking digraph

Weakly ordering the outranking digraph

To get a more complete insight in the overall strict outranking situations, we may use the
RankingByChoosingDigraph constructor imported from the transitiveDigraphs module,
for computing a ranking-by-choosing result from the codual, i.e. the strict outranking
digraph instance gcd (see above).

1 >>> from transitiveDigraphs import RankingByChoosingDigraph

2 >>> rbc = RankingByChoosingDigraph(gcd)

3 Threading ... ## multiprocessing if 2 cores are available

4 Exiting computing threads

5 >>> rbc.showRankingByChoosing()

6 Ranking by Choosing and Rejecting

7 1st ranked ['D']

8 2nd ranked ['C', 'G']

9 2nd last ranked ['B', 'C', 'E']

10 1st last ranked ['A', 'F']

11 >>> rbc.exportGraphViz('officeChoiceRanking')

12 *---- exporting a dot file for GraphViz tools ---------*

13 Exporting to officeChoiceRanking.dot

14 0 { rank = same; A; C; D; }

15 1 { rank = same; G; }

(continues on next page)

100

(continued from previous page)

16 2 { rank = same; E; B; }

17 3 { rank = same; F; }

18 dot -Grankdir=TB -Tpng officeChoiceRanking.dot -o officeChoiceRanking.

→˓png

Fig. 2.18: Ranking-by-choosing from the office choice outranking digraph

In this ranking-by-choosing method, where we operate the epistemic fusion of iterated
(strict) first and last choices, compromise alternative D is now ranked before compromise
alternative G. If the computing node supports multiple processor cores, first and last
choosing iterations are run in parallel. The overall partial ordering result shows again
the important fact that the most expensive site A, and the cheapest site C, both appear
incomparable with most of the other alternatives, as is apparent from the Hasse diagram
of the ranking-by-choosing relation (see Fig. 2.18).

The best choice recommendation appears hence depending on the very importance the
CEO is attaching to each of the three decision objectives he is considering. In the setting
here, where he considers that maximizing the future turnover is the most important
objective followed by minimizing the Costs and, less important, maximizing the working
conditions, site D represents actually the best compromise. However, if Costs do not
play much a role, it would be perhaps better to decide to move to the most advantageous
site A; or if, on the contrary, Costs do matter a lot, moving to the cheapest alternative
C could definitely represent a more convincing recommendation.

It might be worth, as an exercise, to modify these criteria significance weights in the
‘officeChoice.py’ data file in such a way that

� all criteria under an objective appear equi-significant, and

101

� all three decision objectives are considered equally important.

What will become the best choice recommendation under this working hypothesis?

See also:

Lecture 7 notes from the MICS Algorithmic Decision Theory course: [ADT-L7].

Back to Content Table (page 1)

2.6 Rating into relative performance quantiles

� Performance quantile sorting on a single criterion (page 102)

� Rating-by-sorting into relative multicriteria performance quantiles (page 103)

� Rating-by-ranking with relative quantile limits (page 107)

We apply order statistics for sorting a set X of n potential decision actions, evaluated on
m incommensurable performance criteria, into q quantile equivalence classes, based on
pairwise outranking characteristics involving the quantile class limits observed on each
criterion. Thus we may implement a weak ordering algorithm of complexity 𝑂(𝑛𝑚𝑞).

Performance quantile sorting on a single criterion

A single criterion sorting category K is a (usually) lower-closed interval [𝑚𝑘;𝑀𝑘[on a real-
valued performance measurement scale, with 𝑚𝑘 ≤ 𝑀𝑘. If x is a measured performance
on this scale, we may distinguish three sorting situations.

1. 𝑥 < 𝑚𝑘 and (𝑥 < 𝑀𝑘): The performance x is lower than category K.

2. 𝑥 ⩾ 𝑚𝑘 and 𝑥 < 𝑀𝑘: The performance x belongs to category K.

3. 𝑥 > 𝑚𝑘 and 𝑥 ⩾ 𝑀𝑘: The performance x is higher than category K.

As the relation < is the dual of ⩾ (̸⩾), it will be sufficient to check that 𝑥 ⩾ 𝑚𝑘 as well
as 𝑥 ̸⩾ 𝑀𝑘 are true for x to be considered a member of category K.

Upper-closed categories (in a more mathematical integration style) may as well be consid-
ered. In this case it is sufficient to check that 𝑚𝑘 ̸⩾ 𝑥 as well as 𝑀𝑘 ≥ 𝑥 are true for x to
be considered a member of category K. It is worthwhile noticing that a category K such
that 𝑚𝑘 = 𝑀𝑘 is hence always empty by definition. In order to be able to properly sort
over the complete range of values to be sorted, we will need to use a special, two-sided
closed last, respectively first, category.

Let 𝐾 = 𝐾1, ..., 𝐾𝑞 be a non trivial partition of the criterion’s performance measurement
scale into 𝑞 ≥ 2 ordered categories 𝐾𝑘 – i.e. lower-closed intervals [𝑚𝑘;𝑀𝑘[– such that
𝑚𝑘 < 𝑀𝑘, 𝑀𝑘 = 𝑚𝑘+1 for k = 0, . . . , q - 1 and 𝑀𝑞 = ∞. And, let 𝐴 = {𝑎1, 𝑎2, 𝑎3, ...} be
a finite set of not all equal performance measures observed on the scale in question.

102

Property: For all performance measure 𝑥 ∈ 𝐴 there exists now a unique k such that
𝑥 ∈ 𝐾𝑘. If we assimilate, like in descriptive statistics, all the measures gathered in a
category 𝐾𝑘 to the central value of the category – i.e. (𝑚𝑘 +𝑀𝑘)/2 – the sorting result
will hence define a weak order (complete preorder) on A.

Let 𝑄 = {𝑄0, 𝑄1, ..., 𝑄𝑞} denote the set of q + 1 increasing order-statistical quantiles –like
quartiles or deciles– we may compute from the ordered set A of performance measures
observed on a performance scale. If 𝑄0 = min(𝑋), we may, with the following intervals:
[𝑄0;𝑄1[, [𝑄1;𝑄2[, . . . , [𝑄𝑞−1;∞[, hence define a set of q lower-closed sorting categories.
And, in the case of upper-closed categories, if𝑄𝑞 = max(𝑋), we would obtain the intervals
] −∞;𝑄1],]𝑄1;𝑄2], . . . ,]𝑄𝑞−1;𝑄𝑞]. The corresponding sorting of A will result, in both
cases, in a repartition of all measures x into the q quantile categories 𝐾𝑘 for k = 1, . . . ,
q.

Example: Let A = { 𝑎7 = 7.03, 𝑎15 = 9.45, 𝑎11 = 20.35, 𝑎16 = 25.94, 𝑎10 = 31.44,
𝑎9 = 34.48, 𝑎12 = 34.50, 𝑎13 = 35.61, 𝑎14 = 36.54, 𝑎19 = 42.83, 𝑎5 = 50.04, 𝑎2 =
59.85, 𝑎17 = 61.35, 𝑎18 = 61.61, 𝑎3 = 76.91, 𝑎6 = 91.39, 𝑎1 = 91.79, 𝑎4 = 96.52,
𝑎8 = 96.56, 𝑎20 = 98.42 } be a set of 20 increasing performance measures observed on a
given criterion. The lower-closed category limits we obtain with quartiles (q = 4) are:
𝑄0 = 7.03 = 𝑎7, 𝑄1 = 34.485, 𝑄2 = 54.945 (median performance), and 𝑄3 = 91.69. And
the sorting into these four categories defines on A a complete preorder with the following
four equivalence classes: 𝐾1 = {𝑎7, 𝑎10, 𝑎11, 𝑎10, 𝑎15, 𝑎16}, 𝐾2 = {𝑎5, 𝑎9, 𝑎13, 𝑎14, 𝑎19}, 𝐾3 =
{𝑎2, 𝑎3, 𝑎6, 𝑎17, 𝑎18}, and 𝐾4 = {𝑎1, 𝑎4, 𝑎8, 𝑎20}.

Rating-by-sorting into relative multicriteria performance quantiles

Let us now suppose that we are given a performance tableau with a set X of n decision
alternatives evaluated on a coherent family of m performance criteria associated with
the corresponding outranking relation ≿ defined on X. We denote 𝑥𝑗 the performance of
alternative x observed on criterion j.

Suppose furthermore that we want to sort the decision alternatives into q upper-closed
quantile equivalence classes. We therefore consider a series : 𝑘 = 𝑘/𝑞 for k = 0, . . . , q
of q+1 equally spaced quantiles, like quartiles: 0, 0.25, 0.5, 0.75, 1; quintiles: 0, 0.2, 0.4,
0.6, 0.8, 1: or deciles: 0, 0.1, 0.2, . . . , 0.9, 1, for instance.

The upper-closed q𝑘 class corresponds to the m quantile intervals]𝑞𝑗(𝑝𝑘−1); 𝑞𝑗(𝑝𝑘)] ob-
served on each criterion j, where k = 2, . . . , q , 𝑞𝑗(𝑝𝑞) = max𝑋(𝑥𝑗), and the first class
gathers all performances below or equal to 𝑄𝑗(𝑝1).

The lower-closed q𝑘 class corresponds to the m quantile intervals [𝑞𝑗(𝑝𝑘−1); 𝑞𝑗(𝑝𝑘)[ob-
served on each criterion j, where k = 1, . . . , q-1, 𝑞𝑗(𝑝0) = min𝑋(𝑥𝑗), and the last class
gathers all performances above or equal to 𝑄𝑗(𝑝𝑞−1).

We call q-tiles a complete series of k = 1, . . . , q upper-closed q𝑘, respectively lower-closed
q𝑘, multiple criteria quantile classes.

Property: With the help of the bipolar-valued characteristic of the outranking relation
𝑟(≿) we may compute the bipolar-valued characteristic of the assertion: x belongs to
upper-closed q-tiles class q𝑘 class, resp. lower-closed class q𝑘, as follows.

103

𝑟(𝑥 ∈ q𝑘) = min
[︀
− 𝑟

(︀
q(𝑝𝑞−1

)︀
≿ 𝑥), 𝑟

(︀
q(𝑝𝑞

)︀
≿ 𝑥)

]︀
𝑟(𝑥 ∈ q𝑘) = min

[︀
𝑟
(︀
𝑥 ≿ q(𝑝𝑞−1

)︀
, −𝑟

(︀
𝑥 ≿ q(𝑝𝑞

)︀]︀
The outranking relation ≿ verifying the coduality principle, −𝑟

(︀
q(𝑝𝑞−1) ≿ 𝑥

)︀
=

𝑟
(︀
q(𝑝𝑞−1) ≺ 𝑥

)︀
, resp. −𝑟

(︀
𝑥 ≿ q(𝑝𝑞) = 𝑟

(︀
𝑥 ≺ q(𝑝𝑞

)︀
.

We may compute, for instance, a five-tiling of a given random performance tableau with
the help of the ratingDigraphs.RatingByRelativeQuantilesDigraph class.

Listing 2.44: Computing a quintiles rating result

1 >>> from randomPerfTabs import *

2 >>> t = RandomPerformanceTableau(numberOfActions=50,seed=5)

3 >>> from ratingDigraphs import RatingByRelativeQuantilesDigraph

4 >>> rqr = RatingByRelativeQuantilesDigraph(t,quantiles=5)

5 >>> rqr

6 *----- Object instance description -----------*

7 Instance class : RatingByRelativeQuantilesDigraph

8 Instance name : relative_rating_randomperftab

9 Actions : 55

10 Criteria : 7

11 Quantiles : 5

12 Lowerclosed : False

13 Rankingrule : NetFlows

14 Size : 1647

15 Valuation domain : [-1.00;1.00]

16 Determinateness (%): 67.40

17 Attributes : ['name', 'actions', 'actionsOrig',

18 'criteria', 'evaluation', 'NA', 'runTimes',

19 'quantilesFrequencies', 'LowerClosed', 'categories',

20 'criteriaCategoryLimits', 'limitingQuantiles', 'profiles',

21 'profileLimits', 'order', 'nbrThreads', 'relation',

22 'valuationdomain', 'sorting', 'relativeCategoryContent',

23 'sortingRelation', 'rankingRule', 'rankingScores',

24 'rankingCorrelation', 'actionsRanking', 'ratingCategories']

25 *------ Constructor run times (in sec.) ------*

26 Threads : 1

27 Total time : 0.19248

28 Data input : 0.00710

29 Compute quantiles : 0.00117

30 Compute outrankings : 0.17415

31 rating-by-sorting : 0.00074

32 rating-by-ranking : 0.00932

33 >>> rqr.showSorting()

34 *--- Sorting results in descending order ---*

35]0.80 - 1.00]: ['a22']

36]0.60 - 0.80]: ['a03', 'a07', 'a08', 'a11', 'a14', 'a17',

37 'a19', 'a20', 'a29', 'a32', 'a33', 'a37',

(continues on next page)

104

(continued from previous page)

38 'a39', 'a41', 'a42', 'a49']

39]0.40 - 0.60]: ['a01', 'a02', 'a04', 'a05', 'a06', 'a08',

40 'a09', 'a16', 'a17', 'a18', 'a19', 'a21',

41 'a24', 'a27', 'a28', 'a30', 'a31', 'a35',

42 'a36', 'a40', 'a43', 'a46', 'a47', 'a48',

43 'a49', 'a50']

44]0.20 - 0.40]: ['a04', 'a10', 'a12', 'a13', 'a15', 'a23',

45 'a25', 'a26', 'a34', 'a38', 'a43', 'a44',

46 'a45', 'a49']

47] < - 0.20]: ['a44']

Most of the decision actions (26) are gathered in the median quintile]0.40− 0.60] class,
whereas the highest quintile]0.80−1.00] and the lowest quintile] < −0.20] classes gather
each one a unique decision alternative (a22, resp. a44) (see Listing 2.44 Lines XX-).

We may inspect as follows the details of the corresponding sorting characteristics.

Listing 2.45: Bipolar-valued sorting characteristics (ex-
tract)

1 >>> rqr.valuationdomain

2 {'min': Decimal('-1.0'), 'med': Decimal('0'),

3 'max': Decimal('1.0')}

4 >>> rqr.showSortingCharacteristics()

5 x in q^k r(q^k-1 < x) r(q^k >= x) r(x in q^k)

6 a22 in]< - 0.20] 1.00 -0.86 -0.86

7 a22 in]0.20 - 0.40] 0.86 -0.71 -0.71

8 a22 in]0.40 - 0.60] 0.71 -0.71 -0.71

9 a22 in]0.60 - 0.80] 0.71 -0.14 -0.14

10 a22 in]0.80 - 1.00] 0.14 1.00 0.14

11 ...

12 ...

13 a44 in]< - 0.20] 1.00 0.00 0.00

14 a44 in]0.20 - 0.40] 0.00 0.57 0.00

15 a44 in]0.40 - 0.60] -0.57 0.86 -0.57

16 a44 in]0.60 - 0.80] -0.86 0.86 -0.86

17 a44 in]0.80 - 1.00] -0.86 0.86 -0.86

18 ...

19 ...

20 a49 in]< - 0.20] 1.00 -0.43 -0.43

21 a49 in]0.20 - 0.40] 0.43 0.00 0.00

22 a49 in]0.40 - 0.60] 0.00 0.00 0.00

23 a49 in]0.60 - 0.80] 0.00 0.57 0.00

24 a49 in]0.80 - 1.00] -0.57 0.86 -0.57

Alternative a22 verifies indeed positively both sorting conditions only for the highest
quintile [0.80− 1.00] class (see Listing 2.45 Lines 10). Whereas alternatives a44 and a49,
for instance, weakly verify both sorting conditions each one for two, resp. three, adjacent

105

quintile classes (see Lines 13-14 and 21-23).

Quantiles sorting results indeed always verify the following Properties.

1. Coherence: Each object is sorted into a non-empty subset of adjacent q-tiles
classes. An alternative that would miss evaluations on all the criteria will be sorted
conjointly in all q-tiled classes.

2. Uniqueness: If 𝑟(𝑥 ∈ q𝑘) ̸= 0 for k = 1, . . . , q, then performance x is sorted into
exactly one single q-tiled class.

3. Separability: Computing the sorting result for performance x is independent from
the computing of the other performances’ sorting results. This property gives access
to efficient parallel processing of class membership characteristics.

The q-tiles sorting result leaves us hence with more or less overlapping ordered quantile
equivalence classes. For constructing now a linearly ranked q-tiles partition of X , we
may apply three strategies:

1. Average (default): In decreasing lexicographic order of the average of the lower
and upper quantile limits and the upper quantile class limit;

2. Optimistic: In decreasing lexicographic order of the upper and lower quantile class
limits;

3. Pessimistic: In decreasing lexicographic order of the lower and upper quantile
class limits;

Listing 2.46: Weakly ranking the quintiles sorting result

1 >>> rqr.showRatingByQuantilesSorting(strategy='average')

2]0.80-1.00] : ['a22']

3]0.60-0.80] : ['a03', 'a07', 'a11', 'a14', 'a20', 'a29',

4 'a32', 'a33', 'a37', 'a39', 'a41', 'a42']

5]0.40-0.80] : ['a08', 'a17', 'a19']

6]0.20-0.80] : ['a49']

7]0.40-0.60] : ['a01', 'a02', 'a05', 'a06', 'a09', 'a16',

8 'a18', 'a21', 'a24', 'a27', 'a28', 'a30',

9 'a31', 'a35', 'a36', 'a40', 'a46', 'a47',

10 'a48', 'a50']

11]0.20-0.60] : ['a04', 'a43']

12]0.20-0.40] : ['a10', 'a12', 'a13', 'a15', 'a23', 'a25',

13 'a26', 'a34', 'a38', 'a45']

14] < -0.40] : ['a44']

Following, for instance, the average ranking strategy, we find confirmed in the weak
ranking shown in Listing 2.46, that alternative a49 is indeed sorted into three adjacent
quintiles classes, namely]0.20− 0.80] (see Line 6) and precedes the]0.40− 0.60] class, of
same average of lower and upper limits.

106

Rating-by-ranking with relative quantile limits

The actions attribute of a RatingByRelativeQuantilesDigraph class instance contains,
besides the decision actions gathered from the given performance tableau (stored in the
actionsOrig attribute, also the quantile limits observed on all the criteria (stored in the
limitingquantiles attribute, see Listing 2.44 Line 20).

Listing 2.47: The quintiling of the performance evalua-
tion data per criterion

1 >>> rqr.showCriteriaQuantileLimits()

2 Quantile Class Limits (q = 5)

3 Upper-closed classes

4 crit. 0.20 0.40 0.60 0.80 1.00

5 *--

6 g1 31.35 41.09 58.53 71.91 98.08

7 g2 27.81 39.19 49.87 61.66 96.18

8 g3 25.10 34.78 49.45 63.97 92.59

9 g4 24.61 37.91 53.91 71.02 89.84

10 g5 26.94 36.43 52.16 72.52 96.25

11 g6 23.94 44.06 54.92 67.34 95.97

12 g7 30.94 47.40 55.46 69.04 97.10

We may hence rank this extended actions attribute as follows with the NetFlows ranking
rule –default with the RatingByRelativeQuantilesDigraph class.

Listing 2.48: Rating by ranking the quintiling of the per-
formance tableau

1 >>> rqr.computeNetFlowsRanking()

2 ['5-M', '4-M', 'a22', 'a42', 'a07', 'a33', 'a03', 'a01',

3 'a39', 'a48', 'a37', 'a29', 'a41', 'a11', 'a27', 'a05',

4 'a46', 'a02', 'a17', 'a32', '3-M', 'a14', 'a12', 'a20',

5 'a13', 'a08', 'a06', 'a24', 'a47', 'a31', 'a09', 'a21',

6 'a19', 'a43', 'a49', 'a50', 'a40', 'a28', 'a38', 'a25',

7 'a45', 'a18', 'a16', 'a36', 'a35', 'a30', 'a23', 'a34',

8 'a15', '2-M', 'a10', 'a26', 'a04', 'a44', '1-M']

9 >>> rqr.showRatingByQuantilesRanking()

10 *-------- rating by quantiles ranking result ---------

11]0.60 - 0.80] ['a22', 'a42', 'a07', 'a33', 'a03', 'a01',

12 'a39', 'a48', 'a37', 'a29', 'a41', 'a11',

13 'a27', 'a05', 'a46', 'a02', 'a17', 'a32']

14]0.40 - 0.60] ['a14', 'a12', 'a20', 'a13', 'a08', 'a06',

15 'a24', 'a47', 'a31', 'a09', 'a21', 'a19',

16 'a43', 'a49', 'a50', 'a40', 'a28', 'a38',

17 'a25', 'a45', 'a18', 'a16', 'a36', 'a35',

18 'a30', 'a23', 'a34', 'a15']

19]0.20 - 0.40] ['a10', 'a26', 'a04', 'a44']

107

As we are rating into upperclosed quintiles, we obtain from the ranking above an imme-
diate precise rating result. No performance record is rated in the lowest quintile]0.00 -
0.20] and in the highest quintile]0.80 - 1.00] and 28 out of the 50 records are rated in the
midfiled, i.e. the median quintile]0.40 - 0.60].

The rating-by-ranking delivers thus a precise quantiling of a given performance tableau.
One must however not forget that there does not exist a single optimal ranking rule, and
various ranking heuristics may render also various more or less diverging rating results.

Back to Content Table (page 1)

2.7 Rating with learned performance quantile norms

� Introduction (page 108)

� Incremental learning of historical performance quantiles (page 109)

� Rating-by-ranking new performances with quantile norms (page 112)

Introduction

In this tutorial we address the problem of rating multiple criteria performances
of a set of potential decision alternatives with respect to empirical order statistics, i.e.
performance quantiles learned from historical performance data gathered from similar
decision alternatives observed in the past (see [CPSTAT-L5]).

To illustrate the decision problem we face, consider for a moment that, in a given decision
aid study, we observe, for instance in the Table below, the multi-criteria performances of
two potential decision alternatives, named a1001 and a1010, marked on 7 incommen-
surable preference criteria: 2 costs criteria c1 and c2 (to minimize) and 5 benefits
criteria b1 to b5 (to maximize).

Criterion b1 b2 b3 b4 b5 c1 c2

weight 2 2 2 2 2 5 5
a1001 37.0 2 2 61.0 31.0 -4 -40.0
a1010 32.0 9 6 55.0 51.0 -4 -35.0

The performances on benefits criteria b1, b4 and b5 are measured on a cardinal scale
from 0.0 (worst) to 100.0 (best) whereas, the performances on the benefits criteria b2 and
b3 and on the cost criterion c1 are measured on an ordinal scale from 0 (worst) to 10
(best), respectively -10 (worst) to 0 (best). The performances on the cost criterion c2
are again measured on a cardinal negative scale from -100.00 (worst) to 0.0 (best).

The importance (sum of weights) of the costs criteria is equal to the importance (sum
of weights) of the benefits criteria taken all together.

108

The non trivial decision problem we now face here, is to decide, how the multiple criteria
performances of a1001, respectively a1010, may be rated (excellent ? good ?, or fair ?;
perhaps even, weak ? or very weak ?) in an order statistical sense, when compared
with all potential similar multi-criteria performances one has already encountered in the
past.

To solve this absolute rating decision problem, first, we need to estimate multi-criteria
performance quantiles from historical records.

Incremental learning of historical performance quantiles

Suppose that we see flying in random multiple criteria performances from a given model
of random performance tableau (see the randomPerfTabs module). The question we
address here is to estimate empirical performance quantiles on the basis of so far observed
performance vectors. For this task, we are inspired by [CHAM-2006] and [NR3-2007], who
present an efficient algorithm for incrementally updating a quantile-binned cumulative
distribution function (CDF) with newly observed CDFs.

The PerformanceQuantiles class implements such a performance quantiles estimation
based on a given performance tableau. Its main components are:

� Ordered objectives and a criteria dictionaries from a valid performance tableau
instance;

� A list quantileFrequencies of quantile frequencies like quartiles [0.0, 0.25, 05,
0.75,1.0], quintiles [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] or deciles [0.0, 0.1, 0.2, . . . 1.0] for
instance;

� An ordered dictionary limitingQuantiles of so far estimated lower (default) or
upper quantile class limits for each frequency per criterion;

� An ordered dictionary historySizes for keeping track of the number of evaluations
seen so far per criterion. Missing data may make these sizes vary from criterion to
criterion.

Below, an example Python session concerning 900 decision alternatives randomly gen-
erated from a Cost-Benefit Performance tableau model from which are also drawn the
performances of alternatives a1001 and a1010 above.

Listing 2.49: Computing performance quantiles from a
given performance tableau

1 >>> from performanceQuantiles import PerformanceQuantiles

2 >>> from randomPerfTabs import RandomCBPerformanceTableau

3 >>> nbrActions=900

4 >>> nbrCrit = 7

5 >>> seed = 100

6 >>> tp = RandomCBPerformanceTableau(numberOfActions=nbrActions,

7 ... numberOfCriteria=nbrCrit,seed=seed)

8

9 >>> pq = PerformanceQuantiles(tp,
(continues on next page)

109

(continued from previous page)

10 ... numberOfBins = 'quartiles',

11 ... LowerClosed=True)

12

13 >>> pq

14 *------- PerformanceQuantiles instance description ------*

15 Instance class : PerformanceQuantiles

16 Instance name : 4-tiled_performances

17 # Objectives : 2

18 # Criteria : 7

19 # Quantiles : 4

20 # History sizes : {'c1': 887, 'b1': 888, 'b2': 891, 'b3': 895,

21 'b4': 892, 'c2': 893, 'b5': 887}

22 Attributes : ['perfTabType', 'valueDigits', 'actionsTypeStatistics

→˓',

23 'objectives', 'BigData', 'missingDataProbability',

24 'criteria', 'LowerClosed', 'name',

25 'quantilesFrequencies', 'historySizes',

26 'limitingQuantiles', 'cdf']

The PerformanceQuantiles class parameter numberOfBins (see Listing 2.49 Line 10
above), choosing the wished number of quantile frequencies, may be either quartiles (4
bins), quintiles (5 bins), deciles (10 bins), dodeciles (20 bins) or any other integer
number of quantile bins. The quantile bins may be either lower closed (default) or
upper-closed.

Listing 2.50: Printing out the estimated quartile limits

1 >>> pq.showLimitingQuantiles(ByObjectives=True)

2 ---- Historical performance quantiles -----*

3 Costs

4 criteria | weights | '0.00' '0.25' '0.50' '0.75' '1.00'

5 ---------|---

6 'c1' | 5 | -10 -7 -5 -3 0

7 'c2' | 5 | -96.37 -70.65 -50.10 -30.00 -1.43

8 Benefits

9 criteria | weights | '0.00' '0.25' '0.50' '0.75' '1.00'

10 ---------|---

11 'b1' | 2 | 1.99 29.82 49,44 70.73 99.83

12 'b2' | 2 | 0 3 5 7 10

13 'b3' | 2 | 0 3 5 7 10

14 'b4' | 2 | 3.27 30.10 50.82 70.89 98.05

15 'b5' | 2 | 0.85 29.08 48.55 69.98 97.56

Both objectives are equi-important; the sum of weights (10) of the costs criteria balance
the sum of weights (10) of the benefits criteria (see Listing 2.50 column 2). The preference
direction of the costs criteria c1 and c2 is negative; the lesser the costs the better it
is, whereas all the benefits criteria b1 to b5 show positive preference directions, i.e. the

110

higher the benefits the better it is. The columns entitled ‘0.00’, resp. ‘1.00’ show the
quartile Q0, resp. Q4, i.e. the worst, resp. best performance observed so far on each
criterion. Column ‘0.50’ shows the median (Q2) performance observed on the criteria.

New decision alternatives with random multiple criteria performance vectors from the
same random performance tableau model may now be generated with ad hoc random
performance generators. We provide for experimental purpose, in the randomPerfTabs

module, three such generators: one for the standard RandomPerformanceTableau model,
one the for the two objectives RandomCBPerformanceTableau Cost-Benefit model, and
one for the Random3ObjectivesPerformanceTableau model with three objectives con-
cerning respectively economic, environmental or social aspects.

Given a new Performance Tableau with 100 new decision alternatives, the so far estimated
historical quantile limits may be updated as follows:

Listing 2.51: Generating 100 new random decision alter-
natives of the same model

1 >>> from randomPerfTabs import RandomPerformanceGenerator

2 >>> rpg = RandomPerformanceGenerator(tp,seed=seed)

3 >>> newTab = rpg.randomPerformanceTableau(100)

4 >>> # Updating the quartile norms shown above

5 >>> pq.updateQuantiles(newTab,historySize=None)

Parameter historySize (see Listing 2.51 Line 5) of the updateQuantiles() method allows
to balance the new evaluations against the historical ones. With historySize =
None (the default setting), the balance in the example above is 900/1000 (90%, weight
of historical data) against 100/1000 (10%, weight of the new incoming observations).
Putting historySize = 0, for instance, will ignore all historical data (0/100 against
100/100) and restart building the quantile estimation with solely the new incoming data.
The updated quantile limits may be shown in a browser view (see Fig. 2.19).

1 >>> # showing the updated quantile limits in a browser view

2 >>> pq.showHTMLLimitingQuantiles(Transposed=True)

111

Fig. 2.19: Showing the updated quartiles limits

Rating-by-ranking new performances with quantile norms

For absolute rating of a newly given set of decision alternatives with the help
of empirical performance quantiles estimated from historical data, we provide the
RatingByLearnedQuantilesDigraph class from the ratingDigraphs module. The rat-
ing result is computed by ranking the new performance records together with the learned
quantile limits. The constructor requires a valid PerformanceQuantiles instance.

Note: It is important to notice that the RatingByLearnedQuantilesDigraph class,
contrary to the generic OutrankingDigraph class, does not only inherit from the generic
PerformanceTableau class, but also from the PerformanceQuantiles class. The ac-
tions in such a RatingByLearnedQuantilesDigraph instance do not contain only the
newly given decision alternatives, but also the historical quantile profiles obtained from a
given PerformanceQuantiles instance, i.e. estimated quantile bins’ performance limits
from historical performance data.

We reconsider the PerformanceQuantiles object instance pq as computed in the previous
section. Let newActions be a list of 10 new decision alternatives generated with the same
random performance tableau model and including the two decision alternatives a1001
and a1010 mentioned at the beginning.

Listing 2.52: Computing an absolute rating of 10 new
decision alternatives

1 >>> from ratingDigraphs import\

2 ... RatingByLearnedQuantilesDigraph

3 >>> newActions = rpg.randomActions(10)

(continues on next page)

112

(continued from previous page)

4 >>> lqr = RatingByLearnedQuantilesDigraph(pq,newActions,

5 ... rankingRule='best')

6 >>> lqr

7 *----- Object instance description -----------*

8 Instance class : RatingByLearnedQuantilesDigraph

9 Instance name : learnedRatingDigraph

10 Actions : 14

11 Criteria : 7

12 Quantiles : 4

13 Lowerclosed : True

14 Rankingrule : Copeland

15 Size : 93

16 Valuation domain : [-1.00;1.00]

17 Determinateness (%): 76.09

18 Attributes : ['runTimes', 'objectives', 'criteria',

19 'LowerClosed', 'quantilesFrequencies', 'criteriaCategoryLimits',

20 'limitingQuantiles', 'historySizes', 'cdf', 'NA', 'name',

21 'newActions', 'evaluation', 'actionsOrig', 'actions',

22 'categories', 'profiles', 'profileLimits', 'order',

23 'nbrThreads', 'relation', 'valuationdomain', 'sorting',

24 'relativeCategoryContent', 'sortingRelation', 'rankingRule',

25 'rankingCorrelation', 'rankingScores', 'actionsRanking',

26 'ratingCategories']

27 *------ Constructor run times (in sec.) ------*

28 Threads : 1

29 Total time : 0.03680

30 Data input : 0.00119

31 Compute quantiles : 0.00014

32 Compute outrankings : 0.02771

33 rating-by-sorting : 0.00033

34 rating-by-ranking : 0.00742

Data input to the RatingByLearnedQuantilesDigraph class constructor (see Listing 2.52
Line 4) are a valid PerformanceQuantiles object pq and a compatible list newActions of
new decision alternatives generated from the same random origin.

Let us have a look at the digraph’s nodes, here called newActions.

Listing 2.53: Performance tableau of the new incoming
decision alternatives

1 >>> lqr.showPerformanceTableau(actionsSubset=lqr.newActions)

2 *---- performance tableau -----*

3 criteria | a1001 a1002 a1003 a1004 a1005 a1006 a1007 a1008 a1009 a1010

4 ---------|---

5 'b1' | 37.0 27.0 24.0 16.0 42.0 33.0 39.0 64.0 42.0 32.0

6 'b2' | 2.0 5.0 8.0 3.0 3.0 3.0 6.0 5.0 4.0 9.0

(continues on next page)

113

(continued from previous page)

7 'b3' | 2.0 4.0 2.0 1.0 6.0 3.0 2.0 6.0 6.0 6.0

8 'b4' | 61.0 54.0 74.0 25.0 28.0 20.0 20.0 49.0 44.0 55.0

9 'b5' | 31.0 63.0 61.0 48.0 30.0 39.0 16.0 96.0 57.0 51.0

10 'c1' | -4.0 -6.0 -8.0 -5.0 -1.0 -5.0 -1.0 -6.0 -6.0 -4.0

11 'c2' | -40.0 -23.0 -37.0 -37.0 -24.0 -27.0 -73.0 -43.0 -94.0 -35.0

Among the 10 new incoming decision alternatives (see Listing 2.53), we recognize alter-
natives a1001 (see column 2) and a1010 (see last column) we have mentioned in our
introduction.

The RatingByLearnedQuantilesDigraph class instance’s actions dictionary includes as
well the closed lower limits of the four quartile classes: m1 = [0.0- [, m2 = [0.25- [, m3
= [0.5- [, m4 = [0.75 - [. We find these limits in a profiles attribute (see Listing 2.54
below).

Listing 2.54: Showing the limiting profiles of the rating
quantiles

1 >>> lqr.showPerformanceTableau(actionsSubset=lqr.profiles)

2 *---- Quartiles limit profiles -----*

3 criteria | 'm1' 'm2' 'm3' 'm4'

4 ---------|----------------------------

5 'b1' | 2.0 28.8 49.6 75.3

6 'b2' | 0.0 2.9 4.9 6.7

7 'b3' | 0.0 2.9 4.9 8.0

8 'b4' | 3.3 35.9 58.6 72.0

9 'b5' | 0.8 32.8 48.1 69.7

10 'c1' | -10.0 -7.4 -5.4 -3.4

11 'c2' | -96.4 -72.2 -52.3 -34.0

The main run time (see Listing 2.52 Lines 27-) is spent by the class constructor in
computing a bipolar-valued outranking relation on the extended actions set including
both the new alternatives as well as the quartile class limits. In case of large volumes, i.e.
many new decision alternatives and centile classes for instance, a multi-threading version
may be used when multiple processing cores are available (see the technical description
of the RatingByLearnedQuantilesDigraph class).

The actual rating procedure will rely on a complete ranking of the new decision alterna-
tives as well as the quantile class limits obtained from the corresponding bipolar-valued
outranking digraph. Two efficient and scalable ranking rules, the Copeland and its val-
ued version, the Netflows rule may be used for this purpose. The rankingRule parame-
ter allows to choose one of both. With rankingRule=’best’ (see Listing 2.54 Line 4) the
RatingByLearnedQuantilesDigraph constructor will choose the ranking rule that results
in the highest ordinal correlation with the given outranking relation (see [BIS-2012]).

In this rating example, the Copeland rule appears to be the more appropriate ranking
rule.

114

Listing 2.55: Copeland ranking of new alternatives and
historical quartile limits

1 >>> lqr.rankingRule

2 'Copeland'

3 >>> lqr.actionsRanking

4 ['m4', 'a1005', 'a1010', 'a1002', 'a1008', 'a1006', 'a1001',

5 'a1003', 'm3', 'a1007', 'a1004', 'a1009', 'm2', 'm1']

6 >>> lqr.showCorrelation(lqr.rankingCorrelation)

7 Correlation indexes:

8 Crisp ordinal correlation : +0.945

9 Epistemic determination : 0.522

10 Bipolar-valued equivalence : +0.493

We achieve here (see Listing 2.55) a linear ranking without ties (from best to worst) of the
digraph’s actions set, i.e. including the new decision alternatives as well as the quartile
limits m1 to m4, which is very close in an ordinal sense (𝜏 = 0.945) to the underlying
strict outranking relation.

The eventual rating procedure is based in this example on the lower quartile limits, such
that we may collect the quartile classes’ contents in increasing order of the quartiles.

1 >>> lqr.ratingCategories

2 OrderedDict([

3 ('m2', ['a1007','a1004','a1009']),

4 ('m3', ['a1005','a1010','a1002','a1008','a1006','a1001','a1003'])

5])

We notice above that no new decision alternatives are actually rated in the lowest [0.0-
0.25[, respectively highest [0.75- [quartile classes. Indeed, the rating result is shown, in
descending order, as follows:

115

Listing 2.56: Showing a quantiles rating result

1 >>> lqr.showRatingByQuantilesRanking()

2 *-------- rating by quantiles ranking result ---------

3 [0.50 - 0.75[['a1005', 'a1010', 'a1002', 'a1008',

4 'a1006', 'a1001', 'a1003']

5 [0.25 - 0.50[['a1004', 'a1007', 'a1009']

The same result may more conveniently be consulted in a browser view via a specialised
rating heatmap format (see showHTMLPerformanceHeatmap() method (see Fig. 2.20).

1 >>> lqr.showHTMLRatingHeatmap(

2 ... pageTitle='Heatmap of Quartiles Rating',

3 ... Correlations=True,colorLevels=5)

Fig. 2.20: Heatmap of absolute quartiles ranking

Using furthermore a specialised version of the exportGraphViz() method allows drawing
the same rating result in a Hasse diagram format (see Fig. 2.21).

116

1 >>> lqr.exportRatingByRankingGraphViz('normedRatingDigraph')

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to normedRatingDigraph.dot

4 dot -Grankdir=TB -Tpng normedRatingDigraph.dot -o normedRatingDigraph.

→˓png

Fig. 2.21: Absolute quartiles rating digraph

We may now answer the absolute rating decision problem stated at the beginning.
Decision alternative a1001 and alternative a1010 (see below) are both rated into the
same quartile Q3 class (see Fig. 2.21), even if the Copeland ranking, obtained from the
underlying strict outranking digraph (see Fig. 2.20), suggests that alternative a1010 is
effectively better performing than alternative a1001.

Criterion b1 b2 b3 b4 b5 c1 c2

weight 2 2 2 2 2 5 5
a1001 37.0 2 2 61.0 31.0 -4 -40.0
a1010 32.0 9 6 55.0 51.0 -4 -35.0

A preciser rating result may indeed be achieved when using deciles instead of quartiles

117

for estimating the historical marginal cumulative distribution functions.

Listing 2.57: Absolute deciles rating result

1 >>> pq1 = PerformanceQuantiles(tp, numberOfBins = 'deciles',

2 ... LowerClosed=True)

3

4 >>> pq1.updateQuantiles(newTab,historySize=None)

5 >>> lqr1 = RatingByLearnedQuantilesDigraph(pq1,newActions,rankingRule=

→˓'best')

6 >>> lqr1.showRatingByQuantilesRanking()

7 *-------- Deciles rating result ---------

8 [0.60 - 0.70[['a1005', 'a1010', 'a1008', 'a1002']

9 [0.50 - 0.60[['a1006', 'a1001', 'a1003']

10 [0.40 - 0.50[['a1007', 'a1004']

11 [0.30 - 0.40[['a1009']

Compared with the quartiles rating result, we notice in Listing 2.57 that the seven al-
ternatives (a1001, a1002, a1003, a1005, a1006, a1008 and a1010), rated before into the
third quartile class [0.50-0.75[, are now divided up: alternatives a1002, a1005, a1008 and
a1010 attain now the 7th decile class [0.60-0.70[, whereas alternatives a1001, a1003 and
a1006 attain only the 6th decile class [0.50-0.60[. Of the three Q2 [0.25-0.50[rated alter-
natives (a1004, a1007 and a1009), alternatives a1004 and a1007 are now rated into the
5th decile class [0.40-0.50[and a1009 is lowest rated into the 4th decile class [0.30-0.40[.

A browser view may again more conveniently illustrate this refined rating result (see Fig.
2.22).

1 >>> lqr1.showHTMLRatingHeatmap(

2 ... pageTitle='Heatmap of the deciles rating',

3 ... colorLevels=5, Correlations=True)

118

Fig. 2.22: Heatmap of absolute deciles rating

In this deciles rating, decision alternatives a1001 and a1010 are now, as expected, rated
in the 6th decile (D6), respectively in the 7th decile (D7).

To avoid having to recompute performance deciles from historical data when wishing to
refine a rating result, it is useful, depending on the actual size of the historical data, to
initially compute performance quantiles with a relatively high number of bins, for instance
dodeciles or centiles. It is then possible to correctly interpolate quartiles or deciles for
instance, when constructing the rating digraph.

119

Listing 2.58: From deciles interpolated quartiles rating
result

1 >>> lqr2 = RatingByLearnedQuantilesDigraph(pq1,newActions,

2 ... quantiles='quartiles')

3 >>> lqr2.showRatingByQuantilesRanking()

4 *-------- Deciles rating result ---------

5 [0.50 - 0.75[['a1005', 'a1010', 'a1002', 'a1008',

6 'a1006', 'a1001', 'a1003']

7 [0.25 - 0.50[['a1004', 'a1007', 'a1009']

With the quantiles parameter (see Listing 2.58 Line 2), we may recover by interpolation
the same quartiles rating as obtained directly with historical performance quartiles (see
Listing 2.56). Mind that a correct interpolation of quantiles from a given cumulative
distribution function requires more or less uniform distributions of observations in each
bin.

More generally, in the case of industrial production monitoring problems, for instance,
where large volumes of historical performance data may be available, it may be of interest
to estimate even more precisely the marginal cumulative distribution functions, especially
when tail rating results, i.e. distinguishing very best, or very worst multiple criteria
performances, become a critical issue. Similarly, the historySize parameter may be used
for monitoring on the fly unstable random multiple criteria performance data.

Back to Content Table (page 1)

2.8 Sparse bipolar-valued outranking digraphs

The RatinbByRelativeQuantilesDigraph constructor gives via the rating by relative
quantiles a linearly ordered decomposition of the corresponding bipolar-valued outranking
digraph (see Listing 2.46). This decomposition leads us to a new sparse pre-ranked
outranking digraph model.

The sparse pre-ranked outranking digraph model

We may notice that a given outranking digraph -the association of a set of decision
alternatives and an outranking relation- is, following the methodological requirements
of the outranking approach, necessarily associated with a corresponding performance
tableau. And, we may use this underlying performance tableau for linearly decomposing
the set of potential decision alternatives into ordered quantiles equivalence classes
by using the quantiles sorting technique seen in the previous Section.

In the coding example shown in Listing 2.59 below, we generate for instance, first (Lines
2-3), a simple performance tableau of 75 decision alternatives and, secondly (Lines 4),

120

we construct the corresponding PreRankedOutrankingDigraph instance called prg. No-
tice by the way the BigData flag (Line 3) used here for generating a parsimoniously
commented performance tableau.

Listing 2.59: Computing a pre-ranked sparse outranking
digraph

1 >>> from sparseOutrankingDigraphs import \

2 ... PreRankedOutrankingDigraph

3 >>> tp = RandomPerformanceTableau(numberOfActions=75,

4 ... BigData=True,seed=100)

5 >>> prg = PreRankedOutrankingDigraph(tp,quantiles=5)

6 >>> prg

7 *----- Object instance description ------*

8 Instance class : PreRankedOutrankingDigraph

9 Instance name : randomperftab_pr

10 # Actions : 75

11 # Criteria : 7

12 Sorting by : 5-Tiling

13 Ordering strategy : average

14 # Components : 9

15 Minimal order : 1

16 Maximal order : 25

17 Average order : 8.3

18 fill rate : 20.432%

19 Attributes : ['actions', 'criteria', 'evaluation', 'NA', 'name',

20 'order', 'runTimes', 'dimension', 'sortingParameters',

21 'valuationdomain', 'profiles', 'categories', 'sorting',

22 'decomposition', 'nbrComponents', 'components',

23 'fillRate', 'minimalComponentSize', 'maximalComponentSize', ...]

The ordering of the 5-tiling result is following the average lower and upper quintile
limits strategy (see previous section and Listing 2.59 Line 12). We obtain here 9 ordered
components of minimal order 1 and maximal order 25. The corresponding pre-ranked
decomposition may be visualized as follows.

Listing 2.60: The quantiles decomposition of a pre-
ranked outranking digraph

1 >>> prg.showDecomposition()

2 *--- quantiles decomposition in decreasing order---*

3 c1.]0.80-1.00] : [5, 42, 43, 47]

4 c2.]0.60-1.00] : [73]

5 c3.]0.60-0.80] : [1, 4, 13, 14, 22, 32, 34, 35, 40,

6 41, 45, 61, 62, 65, 68, 70, 75]

7 c4.]0.40-0.80] : [2, 54]

8 c5.]0.40-0.60] : [3, 6, 7, 10, 15, 18, 19, 21, 23, 24,

9 27, 30, 36, 37, 48, 51, 52, 56, 58,

(continues on next page)

121

(continued from previous page)

10 63, 67, 69, 71, 72, 74]

11 c6.]0.20-0.60] : [8, 11, 25, 28, 64, 66]

12 c7.]0.20-0.40] : [12, 16, 17, 20, 26, 31, 33, 38, 39,

13 44, 46, 49, 50, 53, 55]

14 c8.] <-0.40] : [9, 29, 60]

15 c9.] <-0.20] : [57, 59]

The highest quintile class (]80%-100%]) contains decision alternatives 5, 42, 43 and 47.
Lowest quintile class (]-20%]) gathers alternatives 57 and 59 (see Listing 2.60 Lines 3
and 15). We may inspect the resulting sparse outranking relation map as follows in a
browser view.

>>> prg.showHTMLRelationMap()

Fig. 2.23: The relation map of a sparse outranking digraph

122

In Fig. 2.23 we easily recognize the 9 linearly ordered quantile equivalence classes. Green
and light-green show positive outranking situations, whereas positive outranked situa-
tions are shown in red and light-red. Indeterminate situations appear in white. In each
one of the 9 quantile equivalence classes we recover in fact the corresponding bipolar-
valued outranking sub-relation, which leads to an actual fill-rate of 20.4% (see Listing
2.59 Line 20).

We may now check how faithful the sparse model represents the complete outranking
relation.

1 >>> g = BipolarOutrankingDigraph(tp)

2 >>> corr = prg.computeOrdinalCorrelation(g)

3 >>> g.showCorrelation(corr)

4 Correlation indexes:

5 Crisp ordinal correlation : +0.863

6 Epistemic determination : 0.315

7 Bipolar-valued equivalence : +0.272

The ordinal correlation index between the standard and the sparse outranking relations is
quite high (+0.863) and their bipolar-valued equivalence is supported by a mean criteria
significance majority of (1.0+0.272)/2 = 64%.

It is worthwhile noticing in Listing 2.59 Line 18 that sparse pre-ranked outranking di-
graphs do not contain a relation attribute. The access to pairwise outranking character-
istic values is here provided via a corresponding relation() function.

1 def relation(self,x,y):

2 """

3 Dynamic construction of the global

4 outranking characteristic function r(x,y).

5 """

6 Min = self.valuationdomain['min']

7 Med = self.valuationdomain['med']

8 Max = self.valuationdomain['max']

9 if x == y:

10 return Med

11 cx = self.actions[x]['component']

12 cy = self.actions[y]['component']

13 if cx == cy:

14 return self.components[cx]['subGraph'].relation[x][y]

15 elif self.components[cx]['rank'] > self.components[cy]['rank']:

16 return Min

17 else:

18 return Max

All reflexive situations are set to the indeterminate value. When two decision alternatives
belong to a same component -quantile equivalence class- we access the relation attribute
of the corresponding outranking sub-digraph. Otherwise we just check the respective
ranks of the components.

123

Ranking pre-ranked sparse outranking digraphs

Each one of these 9 ordered components may now be locally ranked by using a suitable
ranking rule. Best operational results, both in run times and quality, are more or less
equally given with the Copeland and the NetFlows rules. The eventually obtained linear
ordering (from the worst to best) is stored in a prg.boostedOrder attribute. A reversed
linear ranking (from the best to the worst) is stored in a prg.boostedRanking attribute.

Listing 2.61: Showing the component wise Copeland
ranking

1 >>> prg.boostedRanking

2 [43, 47, 42, 5, 73, 65, 68, 32, 62, 70, 35, 22, 75, 45, 1,

3 61, 41, 34, 4, 13, 40, 14, 2, 54, 63, 37, 56, 71, 69, 36,

4 19, 72, 15, 48, 6, 30, 74, 3, 21, 58, 52, 18, 7, 24, 27,

5 23, 67, 51, 10, 25, 11, 8, 64, 28, 66, 53, 12, 31, 39, 55,

6 20, 46, 49, 16, 44, 26, 38, 33, 17, 50, 29, 60, 9, 59, 57]

Alternative 43 appears first ranked, whereas alternative 57 is last ranked (see Listing
2.61 Line 2 and 6). The quality of this ranking result may be assessed by computing its
ordinal correlation with the standard outranking relation.

1 >>> corr = g.computeRankingCorrelation(prg.boostedRanking)

2 >>> g.showCorrelation(corr)

3 Correlation indexes:

4 Crisp ordinal correlation : +0.807

5 Epistemic determination : 0.315

6 Bipolar-valued equivalence : +0.254

We may also verify below that the Copeland ranking obtained from the standard out-
ranking digraph is highly correlated (+0.822) with the one obtained from the sparse
outranking digraph.

1 >>> from linearOrders import CopelandOrder

2 >>> cop = CopelandOrder(g)

3 >>> print(cop.computeRankingCorrelation(prg.boostedRanking))

4 {'correlation': 0.822, 'determination': 1.0}

Noticing the computational efficiency of the quantiles sorting construction, coupled with
the separability property of the quantile class membership characteristics computation,
we will make usage of the PreRankedOutrankingDigraph constructor in the cythonized
Digraph3 modules (page 125) for HPC ranking big and even huge performance tableaux.

Back to Content Table (page 1)

124

2.9 HPC ranking with big outranking digraphs

� C-compiled Python modules (page 125)

� Big Data performance tableaux (page 126)

� C-implemented integer-valued outranking digraphs (page 127)

� The sparse outranking digraph implementation (page 129)

� Ranking big sets of decision alternatives (page 133)

� HPC quantiles ranking records (page 135)

C-compiled Python modules

The Digraph3 collection provides cythonized6, i.e. C-compiled and optimised versions
of the main python modules for tackling multiple criteria decision problems facing very
large sets of decision alternatives (> 10000). Such problems appear usually with a
combinatorial organisation of the potential decision alternatives, as is frequently the case
in bioinformatics for instance. If HPC facilities with nodes supporting numerous cores (>
20) and big RAM (> 50GB) are available, ranking up to several millions of alternatives
(see [BIS-2016]) becomes effectively tractable.

Four cythonized Digraph3 modules, prefixed with the letter c and taking a pyx exten-
sion, are provided with their corresponding setup tools in the Digraph3/cython directory,
namely

� cRandPerfTabs.pyx

� cIntegerOutrankingDigraphs.pyx

� cIntegerSortingDigraphs.pyx

� cSparseIntegerOutrankingDigraphs.pyx

Their automatic compilation and installation, alongside the standard Digraph3 python3
modules, requires the cython compilerPage 125, 6 (. . . $ pip3 install cython) and a C com-
piler (. . . $ sudo apt install gcc on Ubuntu).

Warning: These cythonized modules, specifically designed for being run
on HPC clusters (see https://hpc.uni.lu), require the Unix forking start
method of subprocesses (see start methods of the multiprocessing module
(https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-
methods)) and therefore, due to forking problems on Mac OS platforms, may
only operate safely on Linux platforms.

6 See https://cython.org/

125

https://hpc.uni.lu
https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
https://cython.org/

Big Data performance tableaux

In order to efficiently type the C variables, the cRandPerfTabs module provides the usual
random performance tableau models, but, with integer action keys, float performance
evaluations, integer criteria weights and float discrimination thresholds. And, to limit
as much as possible memory occupation of class instances, all the usual verbose comments
are dropped from the description of the actions and criteria dictionaries.

1 >>> from cRandPerfTabs import *

2 >>> t = cRandomPerformanceTableau(numberOfActions=4,numberOfCriteria=2)

3 >>> t

4 *------- PerformanceTableau instance description ------*

5 Instance class : cRandomPerformanceTableau

6 Seed : None

7 Instance name : cRandomperftab

8 # Actions : 4

9 # Criteria : 2

10 Attributes : ['randomSeed', 'name', 'actions', 'criteria',

11 'evaluation', 'weightPreorder']

12 >>> t.actions

13 OrderedDict([(1, {'name': '#1'}), (2, {'name': '#2'}),

14 (3, {'name': '#3'}), (4, {'name': '#4'})])

15 >>> t.criteria

16 OrderedDict([

17 ('g1', {'name': 'RandomPerformanceTableau() instance',

18 'comment': 'Arguments: ; weightDistribution=equisignificant;

19 weightScale=(1, 1); commonMode=None',

20 'thresholds': {'ind': (10.0, 0.0),

21 'pref': (20.0, 0.0),

22 'veto': (80.0, 0.0)},

23 'scale': (0.0, 100.0),

24 'weight': 1,

25 'preferenceDirection': 'max'}),

26 ('g2', {'name': 'RandomPerformanceTableau() instance',

27 'comment': 'Arguments: ; weightDistribution=equisignificant;

28 weightScale=(1, 1); commonMode=None',

29 'thresholds': {'ind': (10.0, 0.0),

30 'pref': (20.0, 0.0),

31 'veto': (80.0, 0.0)},

32 'scale': (0.0, 100.0),

33 'weight': 1,

34 'preferenceDirection': 'max'})])

35 >>> t.evaluation

36 {'g1': {1: 35.17, 2: 56.4, 3: 1.94, 4: 5.51},

37 'g2': {1: 95.12, 2: 90.54, 3: 51.84, 4: 15.42}}

38 >>> t.showPerformanceTableau()

39 Criteria | 'g1' 'g2'

(continues on next page)

126

(continued from previous page)

40 Actions | 1 1

41 ---------|---------------

42 '#1' | 91.18 90.42

43 '#2' | 66.82 41.31

44 '#3' | 35.76 28.86

45 '#4' | 7.78 37.64

Conversions from the Big Data model to the standard model and vice versa are provided.

1 >>> t1 = t.convert2Standard()

2 >>> t1.convertWeight2Decimal()

3 >>> t1.convertEvaluation2Decimal()

4 >>> t1

5 *------- PerformanceTableau instance description ------*

6 Instance class : PerformanceTableau

7 Seed : None

8 Instance name : std_cRandomperftab

9 # Actions : 4

10 # Criteria : 2

11 Attributes : ['name', 'actions', 'criteria', 'weightPreorder',

12 'evaluation', 'randomSeed']

C-implemented integer-valued outranking digraphs

The C compiled version of the bipolar-valued digraph models takes integer relation char-
acteristic values.

1 >>> t = cRandomPerformanceTableau(numberOfActions=1000,

→˓numberOfCriteria=2)

2 >>> from cIntegerOutrankingDigraphs import *

3 >>> g = IntegerBipolarOutrankingDigraph(t,Threading=True,nbrCores=4)

4 >>> g

5 *------- Object instance description ------*

6 Instance class : IntegerBipolarOutrankingDigraph

7 Instance name : rel_cRandomperftab

8 # Actions : 1000

9 # Criteria : 2

10 Size : 465024

11 Determinateness : 56.877

12 Valuation domain : {'min': -2, 'med': 0, 'max': 2,

13 'hasIntegerValuation': True}

14 ---- Constructor run times (in sec.) ----

15 Total time : 4.23880

16 Data input : 0.01203

17 Compute relation : 3.60788

(continues on next page)

127

(continued from previous page)

18 Gamma sets : 0.61889

19 #Threads : 4

20 Attributes : ['name', 'actions', 'criteria', 'totalWeight',

21 'valuationdomain', 'methodData', 'evaluation',

22 'order', 'runTimes', 'nbrThreads', 'relation',

23 'gamma', 'notGamma']

On a classic intel-i7 equipped PC with four single threaded cores, the
IntegerBipolarOutrankingDigraph constructor takes about four seconds for comput-
ing amillion pairwise outranking characteristic values. In a similar setting, the standard
BipolarOutrankingDigraph class constructor operates more than two times slower.

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> t1 = t.convert2Standard()

3 >>> g1 = BipolarOutrankingDigraph(t1,Threading=True,nbrCores=4)

4 >>> g1

5 *------- Object instance description ------*

6 Instance class : BipolarOutrankingDigraph

7 Instance name : rel_std_cRandomperftab

8 # Actions : 1000

9 # Criteria : 2

10 Size : 465024

11 Determinateness : 56.817

12 Valuation domain : {'min': Decimal('-1.0'),

13 'med': Decimal('0.0'),

14 'max': Decimal('1.0'),

15 'precision': Decimal('0')}

16 ---- Constructor run times (in sec.) ----

17 Total time : 8.63340

18 Data input : 0.01564

19 Compute relation : 7.52787

20 Gamma sets : 1.08987

21 #Threads : 4

By far, most of the run time is in each case needed for computing the individual pairwise
outranking characteristic values. Notice also below the memory occupations of both
outranking digraph instances.

1 >>> from digraphsTools import total_size

2 >>> total_size(g)

3 108662777

4 >>> total_size(g1)

5 212679272

6 >>> total_size(g.relation)/total_size(g)

7 0.34

8 >>> total_size(g.gamma)/total_size(g)

9 0.45

128

About 103MB for g and 202MB for g1. The standard Decimal valued
BipolarOutrankingDigraph instance g1 thus nearly doubles the memory occupation
of the corresponding IntegerBipolarOutrankingDigraph g instance (see Line 3 and 5
above). 3/4 of this memory occupation is due to the g.relation (34%) and the g.gamma
(45%) dictionaries. And these ratios quadratically grow with the digraph order. To limit
the object sizes for really big outranking digraphs, we need to abandon the complete
implementation of adjacency tables and gamma functions.

The sparse outranking digraph implementation

The idea is to first decompose the complete outranking relation into an ordered collection
of equivalent quantile performance classes. Let us consider for this illustration a random
performance tableau with 100 decision alternatives evaluated on 7 criteria.

1 >>> from cRandPerfTabs import *

2 >>> t = cRandomPerformanceTableau(numberOfActions=100,

3 ... numberOfCriteria=7,seed=100)

We sort the 100 decision alternatives into overlapping quartile classes and rank with
respect to the average quantile limits.

1 >>> from cSparseIntegerOutrankingDigraphs import *

2 >>> sg = SparseIntegerOutrankingDigraph(t,quantiles=4)

3 >>> sg

4 *----- Object instance description --------------*

5 Instance class : SparseIntegerOutrankingDigraph

6 Instance name : cRandomperftab_mp

7 # Actions : 100

8 # Criteria : 7

9 Sorting by : 4-Tiling

10 Ordering strategy : average

11 Ranking rule : Copeland

12 # Components : 6

13 Minimal order : 1

14 Maximal order : 35

15 Average order : 16.7

16 fill rate : 24.970%

17 *---- Constructor run times (in sec.) ----

18 Nbr of threads : 1

19 Total time : 0.08212

20 QuantilesSorting : 0.01481

21 Preordering : 0.00022

22 Decomposing : 0.06707

23 Ordering : 0.00000

24 Attributes : ['runTimes', 'name', 'actions', 'criteria',

25 'evaluation', 'order', 'dimension',

26 'sortingParameters', 'nbrOfCPUs',

(continues on next page)

129

(continued from previous page)

27 'valuationdomain', 'profiles', 'categories',

28 'sorting', 'minimalComponentSize',

29 'decomposition', 'nbrComponents', 'nd',

30 'components', 'fillRate',

31 'maximalComponentSize', 'componentRankingRule',

32 'boostedRanking']

We obtain in this example here a decomposition into 6 linearly ordered components with
a maximal component size of 35 for component c3.

1 >>> sg.showDecomposition()

2 *--- quantiles decomposition in decreasing order---*

3 c1.]0.75-1.00] : [3, 22, 24, 34, 41, 44, 50, 53, 56, 62, 93]

4 c2.]0.50-1.00] : [7, 29, 43, 58, 63, 81, 96]

5 c3.]0.50-0.75] : [1, 2, 5, 8, 10, 11, 20, 21, 25, 28, 30, 33,

6 35, 36, 45, 48, 57, 59, 61, 65, 66, 68, 70,

7 71, 73, 76, 82, 85, 89, 90, 91, 92, 94, 95, 97]

8 c4.]0.25-0.75] : [17, 19, 26, 27, 40, 46, 55, 64, 69, 87, 98, 100]

9 c5.]0.25-0.50] : [4, 6, 9, 12, 13, 14, 15, 16, 18, 23, 31, 32,

10 37, 38, 39, 42, 47, 49, 51, 52, 54, 60, 67, 72,

11 74, 75, 77, 78, 80, 86, 88, 99]

12 c6.]<-0.25] : [79, 83, 84]

A restricted outranking relation is stored for each component with more than one al-
ternative. The resulting global relation map of the first ranked 75 alternatives looks as
follows.

>>> sg.showRelationMap(toIndex=75)

130

Fig. 2.24: Sparse quartiles-sorting decomposed outranking relation (extract). Legend:
outranking for certain (⊤); outranked for certain (⊥); more or less outranking (+); more
or less outranked (−); indeterminate ().

131

With a fill rate of 25%, the memory occupation of this sparse outranking digraph sg
instance takes now only 769kB, compared to the 1.7MB required by a corresponding
standard IntegerBipolarOutrankingDigraph instance.

>>> print('%.0f kB' % (total_size(sg)/1024))

769kB

For sparse outranking digraphs, the adjacency table is implemented as a dynamic
relation() function instead of a double dictionary.

1 def relation(self, int x, int y):

2 """

3 *Parameters*:

4 * x (int action key),

5 * y (int action key).

6 Dynamic construction of the global outranking

7 characteristic function *r(x S y)*.

8 """

9 cdef int Min, Med, Max, rx, ry

10 Min = self.valuationdomain['min']

11 Med = self.valuationdomain['med']

12 Max = self.valuationdomain['max']

13 if x == y:

14 return Med

15 cx = self.actions[x]['component']

16 cy = self.actions[y]['component']

17 #print(self.components)

18 rx = self.components[cx]['rank']

19 ry = self.components[cy]['rank']

20 if rx == ry:

21 try:

22 rxpg = self.components[cx]['subGraph'].relation

23 return rxpg[x][y]

24 except AttributeError:

25 componentRanking = self.components[cx]['componentRanking']

26 if componentRanking.index(x) < componentRanking.index(x):

27 return Max

28 else:

29 return Min

30 elif rx > ry:

31 return Min

32 else:

33 return Max

132

Ranking big sets of decision alternatives

We may now rank the complete set of 100 decision alternatives by locally ranking with
the Copeland or the NetFlows rule, for instance, all these individual components.

1 >>> sg.boostedRanking

2 [22, 53, 3, 34, 56, 62, 24, 44, 50, 93, 41, 63, 29, 58,

3 96, 7, 43, 81, 91, 35, 25, 76, 66, 65, 8, 10, 1, 11, 61,

4 30, 48, 45, 68, 5, 89, 57, 59, 85, 82, 73, 33, 94, 70,

5 97, 20, 92, 71, 90, 95, 21, 28, 2, 36, 87, 40, 98, 46, 55,

6 100, 64, 17, 26, 27, 19, 69, 6, 38, 4, 37, 60, 31, 77, 78,

7 47, 99, 18, 12, 80, 54, 88, 39, 9, 72, 86, 42, 13, 23, 67,

8 52, 15, 32, 49, 51, 74, 16, 14, 75, 79, 83, 84]

When actually computing linear rankings of a set of alternatives, the local outranking re-
lations are of no practical usage, and we may furthermore reduce the memory occupation
of the resulting digraph by

1. refining the ordering of the quantile classes by taking into account how well an
alternative is outranking the lower limit of its quantile class, respectively the upper
limit of its quantile class is not outranking the alternative;

2. dropping the local outranking digraphs and keeping for each quantile class only a
locally ranked list of alternatives.

We provide therefore the cQuantilesRankingDigraph class.

1 >>> qr = cQuantilesRankingDigraph(t,4)

2 >>> qr

3 *----- Object instance description --------------*

4 Instance class : cQuantilesRankingDigraph

5 Instance name : cRandomperftab_mp

6 # Actions : 100

7 # Criteria : 7

8 Sorting by : 4-Tiling

9 Ordering strategy : optimal

10 Ranking rule : Copeland

11 # Components : 47

12 Minimal order : 1

13 Maximal order : 10

14 Average order : 2.1

15 fill rate : 2.566%

16 *---- Constructor run times (in sec.) ----*

17 Nbr of threads : 1

18 Total time : 0.03702

19 QuantilesSorting : 0.01785

20 Preordering : 0.00022

21 Decomposing : 0.01892

22 Ordering : 0.00000

(continues on next page)

133

(continued from previous page)

23 Attributes : ['runTimes', 'name', 'actions', 'order',

24 'dimension', 'sortingParameters', 'nbrOfCPUs',

25 'valuationdomain', 'profiles', 'categories',

26 'sorting', 'minimalComponentSize',

27 'decomposition', 'nbrComponents', 'nd',

28 'components', 'fillRate', 'maximalComponentSize',

29 'componentRankingRule', 'boostedRanking']

With this optimised quantile ordering strategy, we obtain now 47 performance equivalence
classes.

1 >>> qr.components

2 OrderedDict([

3 ('c01', {'rank': 1,

4 'lowQtileLimit': ']0.75',

5 'highQtileLimit': '1.00]',

6 'componentRanking': [53]}),

7 ('c02', {'rank': 2,

8 'lowQtileLimit': ']0.75',

9 'highQtileLimit': '1.00]',

10 'componentRanking': [3, 23, 63, 50]}),

11 ('c03', {'rank': 3,

12 'lowQtileLimit': ']0.75',

13 'highQtileLimit': '1.00]',

14 'componentRanking': [34, 44, 56, 24, 93, 41]}),

15 ...

16 ...

17 ...

18 ('c45', {'rank': 45,

19 'lowQtileLimit': ']0.25',

20 'highQtileLimit': '0.50]',

21 'componentRanking': [49]}),

22 ('c46', {'rank': 46,

23 'lowQtileLimit': ']0.25',

24 'highQtileLimit': '0.50]',

25 'componentRanking': [52, 16, 86]}),

26 ('c47', {'rank': 47,

27 'lowQtileLimit': ']<',

28 'highQtileLimit': '0.25]',

29 'componentRanking': [79, 83, 84]})])

30 >>> print('%.0f kB' % (total_size(qr)/1024))

31 208kB

We observe an even more considerably less voluminous memory occupation: 208kB com-
pared to the 769kB of the SparseIntegerOutrankingDigraph instance. It is opportune,
however, to measure the loss of quality of the resulting Copeland ranking when working
with sparse outranking digraphs.

134

1 >>> from cIntegerOutrankingDigraphs import *

2 >>> ig = IntegerBipolarOutrankingDigraph(t)

3 >>> print('Complete outranking : %+.4f '\

4 ... % (ig.computeOrderCorrelation(ig.computeCopelandOrder())\

5 ... ['correlation']))

6

7 Complete outranking : +0.7474

8 >>> print('Sparse 4-tiling : %+.4f '\

9 ... % (ig.computeOrderCorrelation(\

10 ... list(reversed(sg.boostedRanking)))['correlation']))

11

12 Sparse 4-tiling : +0.7172

13 >>> print('Optimzed sparse 4-tiling: %+.4f '\

14 ... % (ig.computeOrderCorrelation(\

15 ... list(reversed(qr.boostedRanking)))['correlation']))

16

17 Optimzed sparse 4-tiling: +0.7051

The best ranking correlation with the pairwise outranking situations (+0.75) is naturally
given when we apply the Copeland rule to the complete outranking digraph. When
we apply the same rule to the sparse 4-tiled outranking digraph, we get a correlation
of +0.72, and when applying the Copeland rule to the optimised 4-tiled digraph, we
still obtain a correlation of +0.71. These results actually depend on the number of
quantiles we use as well as on the given model of random performance tableau. In case of
Random3ObjectivesPerformanceTableau instances, for instance, we would get in a similar
setting a complete outranking correlation of +0.86, a sparse 4-tiling correlation of +0.82,
and an optimzed sparse 4-tiling correlation of +0.81.

HPC quantiles ranking records

Following from the separability property of the q-tiles sorting of each action into each
q-tiles class, the q-sorting algorithm may be safely split into as much threads as are
multiple processing cores available in parallel. Furthermore, the ranking procedure being
local to each diagonal component, these procedures may as well be safely processed in
parallel threads on each component restricted outrankingdigraph.

Using the HPC platform of the University of Luxembourg (https://hpc.uni.lu/), the
following run times for very big ranking problems could be achieved both:

� on Iris -skylake nodes with 28 cores7, and

� on the 3TB -bigmem Gaia-183 node with 64 cores8,

by running the cythonized python modules in an Intel compiled virtual Python 3.6.5
environment [GCC Intel(R) 17.0.1 –enable-optimizations c++ gcc 6.3 mode] on Debian
8 Linux.

7 See https://hpc.uni.lu/systems/iris/
8 See https://hpc.uni.lu/systems/gaia/

135

https://hpc.uni.lu/
https://hpc.uni.lu/systems/iris/
https://hpc.uni.lu/systems/gaia/

Fig. 2.25: HPC-UL Ranking Performance Records (Spring 2018)

Example python session on the HPC-UL Iris-126 -skylake nodePage 135, 7

1 (myPy365ICC) [rbisdorff@iris-126 Test]$ python

2 Python 3.6.5 (default, May 9 2018, 09:54:28)

3 [GCC Intel(R) C++ gcc 6.3 mode] on linux

4 Type "help", "copyright", "credits" or "license" for more␣

→˓information.

5 >>>

1 >>> from cRandPerfTabs import\

2 ... cRandom3ObjectivesPerformanceTableau as cR3ObjPT

3

4 >>> pt = cR3ObjPT(numberOfActions=1000000,

5 ... numberOfCriteria=21,

6 ... weightDistribution='equiobjectives',

7 ... commonScale = (0.0,1000.0),

8 ... commonThresholds = [(2.5,0.0),(5.0,0.0),(75.0,0.0)],

9 ... commonMode = ['beta','variable',None],

10 ... missingDataProbability=0.05,

11 ... seed=16)

12

13 >>> import cSparseIntegerOutrankingDigraphs as iBg

14 >>> qr = iBg.cQuantilesRankingDigraph(pt,quantiles=10,

15 ... quantilesOrderingStrategy='optimal',

16 ... minimalComponentSize=1,

17 ... componentRankingRule='NetFlows',

18 ... LowerClosed=False,

19 ... Threading=True,

20 ... tempDir='/tmp',

21 ... nbrOfCPUs=28)

22

23 >>> qr

24 *----- Object instance description --------------*

25 Instance class : cQuantilesRankingDigraph

26 Instance name : random3ObjectivesPerfTab_mp

(continues on next page)

136

(continued from previous page)

27 # Actions : 1000000

28 # Criteria : 21

29 Sorting by : 10-Tiling

30 Ordering strategy : optimal

31 Ranking rule : NetFlows

32 # Components : 233645

33 Minimal order : 1

34 Maximal order : 153

35 Average order : 4.3

36 fill rate : 0.001%

37 *---- Constructor run times (in sec.) ----*

38 Nbr of threads : 28

39 Total time : 177.02770

40 QuantilesSorting : 99.55377

41 Preordering : 5.17954

42 Decomposing : 72.29356

On this 2x14c Intel Xeon Gold 6132 @ 2.6 GHz equipped HPC node with 132GB
RAMPage 135, 7, deciles sorting and locally ranking a million decision alternatives evalu-
ated on 21 incommensurable criteria, by balancing an economic, an environmental and a
societal decision objective, takes us about 3 minutes (see Lines 37-42 above); with 1.5
minutes for the deciles sorting and, a bit more than one minute, for the local ranking of
the individual components.

The optimised deciles sorting leads to 233645 components (see Lines 32-36 above) with
a maximal order of 153. The fill rate of the adjacency table is reduced to 0.001%. Of
the potential trillion (10^12) pairwise outrankings, we effectively keep only 10 millions
(10^7). This high number of components results from the high number of involved
performance criteria (21), leading in fact to a very refined epistemic discrimination of
majority outranking margins.

A non-optimised deciles sorting would instead give at most 110 components with in-
evitably very big intractable local digraph orders. Proceeding with a more detailed quan-
tiles sorting, for reducing the induced decomposing run times, leads however quickly to
intractable quantiles sorting times. A good compromise is given when the quantiles sort-
ing and decomposing steps show somehow equivalent run times; as is the case in our
example session: 99.6 versus 77.3 seconds (see Lines 40 and 42 above).

Let us inspect the 21 marginal performances of the five best-ranked alternatives listed
below.

1 >>> pt.showPerformanceTableau(

2 ... actionsSubset=qr.boostedRanking[:5],

3 ... Transposed=True)

4

5 *---- performance tableau -----*

6 criteria | weights | #773909 #668947 #567308 #578560 #426464

7 ---------|---
(continues on next page)

137

(continued from previous page)

8 'Ec01' | 42 | 969.81 844.71 917.00 NA 808.35

9 'So02' | 48 | NA 891.52 836.43 NA 899.22

10 'En03' | 56 | 687.10 NA 503.38 873.90 NA

11 'So04' | 48 | 455.05 845.29 866.16 800.39 956.14

12 'En05' | 56 | 809.60 846.87 939.46 851.83 950.51

13 'Ec06' | 42 | 919.62 802.45 717.39 832.44 974.63

14 'Ec07' | 42 | 889.01 722.09 606.11 902.28 574.08

15 'So08' | 48 | 862.19 699.38 907.34 571.18 943.34

16 'En09' | 56 | 857.34 817.44 819.92 674.60 376.70

17 'Ec10' | 42 | NA 874.86 NA 847.75 739.94

18 'En11' | 56 | NA 824.24 855.76 NA 953.77

19 'Ec12' | 42 | 802.18 871.06 488.76 841.41 599.17

20 'En13' | 56 | 827.73 839.70 864.48 720.31 877.23

21 'So14' | 48 | 943.31 580.69 827.45 815.18 461.04

22 'En15' | 56 | 794.57 801.44 924.29 938.70 863.72

23 'Ec16' | 42 | 581.15 599.87 949.84 367.34 859.70

24 'So17' | 48 | 881.55 856.05 NA 796.10 655.37

25 'Ec18' | 42 | 863.44 520.24 919.75 865.14 914.32

26 'So19' | 48 | NA NA NA 790.43 842.85

27 'Ec20' | 42 | 582.52 831.93 820.92 881.68 864.81

28 'So21' | 48 | 880.87 NA 628.96 746.67 863.82

The given ranking problem involves 8 criteria assessing the economic performances, 7
criteria assessing the societal performances and 6 criteria assessing the environmental
performances of the decision alternatives. The sum of criteria significance weights (336)
is the same for all three decision objectives. The five best-ranked alternatives are, in
decreasing order: #773909, #668947, #567308, #578560 and #426464.

Their random performance evaluations were obviously drawn on all criteria with a good
(+) performance profile, i.e. a Beta(alpha = 5.8661, beta = 2.62203) law (see the tutorial
generating random performance tableaux (page 32)).

1 >>> for x in qr.boostedRanking[:5]:

2 ... print(pt.actions[x]['name'],

3 ... pt.actions[x]['profile'])

4

5 #773909 {'Eco': '+', 'Soc': '+', 'Env': '+'}

6 #668947 {'Eco': '+', 'Soc': '+', 'Env': '+'}

7 #567308 {'Eco': '+', 'Soc': '+', 'Env': '+'}

8 #578560 {'Eco': '+', 'Soc': '+', 'Env': '+'}

9 #426464 {'Eco': '+', 'Soc': '+', 'Env': '+'}

We consider now a partial performance tableau best10, consisting only, for instance, of the
ten best-ranked alternatives, with which we may compute a corresponding integer
outranking digraph valued in the range (-1008, +1008).

1 >>> best10 = cPartialPerformanceTableau(pt,qr.boostedRanking[:10])

(continues on next page)

138

(continued from previous page)

2 >>> from cIntegerOutrankingDigraphs import *

3 >>> g = IntegerBipolarOutrankingDigraph(best10)

4 >>> g.valuationdomain

5 {'min': -1008, 'med': 0, 'max': 1008, 'hasIntegerValuation': True}

6 >>> g.showRelationTable(ReflexiveTerms=False)

7 * ---- Relation Table -----

8 r(x>y) | #773909 #668947 #567308 #578560 #426464 #298061 #155874

→˓#815552 #279729 #928564

9 --------|---

→˓--------------------

10 #773909 | - +390 +90 +270 -50 +340 +220 ␣

→˓+60 +116 +222

11 #668947 | +78 - +42 +250 -22 +218 +56 ␣

→˓+172 +74 +64

12 #567308 | +70 +418 - +180 +156 +174 +266 ␣

→˓+78 +256 +306

13 #578560 | -4 +78 +28 - -12 +100 -48 ␣

→˓+154 -110 -10

14 #426464 | +202 +258 +284 +138 - +416 +312 ␣

→˓+382 +534 +278

15 #298061 | -48 +68 +172 +32 -42 - +54 ␣

→˓+48 +248 +374

16 #155874 | +72 +378 +322 +174 +274 +466 - ␣

→˓+212 +308 +418

17 #815552 | +78 +126 +272 +318 +54 +194 +172 - ␣

→˓ -14 +22

18 #279729 | +240 +230 -110 +290 +72 +140 +388 ␣

→˓+62 - +250

19 #928564 | +22 +228 -14 +246 +36 +78 +56 ␣

→˓+110 +318 -

20 r(x>y) image range := [-1008;+1008]

21 >>> g.condorcetWinners()

22 [155874, 426464, 567308]

23 >>> g.computeChordlessCircuits()

24 []

25 >>> g.computeTransitivityDegree()

26 0.78

Three alternatives -#155874, #426464 and #567308- qualify as Condorcet winners, i.e.
they each positively outrank all the other nine alternatives. No chordless outranking
circuits are detected, yet the transitivity of the apparent outranking relation is not given.
And, no clear ranking alignment hence appears when inspecting the strict outranking
digraph (i.e. the codual ~(-g) of g) shown in Fig. 2.26.

1 >>> (~(-g)).exportGraphViz()

2 *---- exporting a dot file for GraphViz tools ---------*

(continues on next page)

139

(continued from previous page)

3 Exporting to converse-dual_rel_best10.dot

4 dot -Tpng converse-dual_rel_best10.dot -o converse-dual_rel_best10.png

Fig. 2.26: Validated strict outranking situations between the ten best-ranked alternatives

Restricted to these ten best-ranked alternatives, the Copeland, the NetFlows as well as
the Kemeny ranking rule will all rank alternative #426464 first and alternative #578560
last. Otherwise the three ranking rules produce in this case more or less different rankings.

1 >>> g.computeCopelandRanking()

2 [426464, 567308, 155874, 279729, 773909, 928564, 668947, 815552, 298061,

→˓ 578560]

3 >>> g.computeNetFlowsRanking()

4 [426464, 155874, 773909, 567308, 815552, 279729, 928564, 298061, 668947,

→˓ 578560]

5 >>> from linearOrders import *

6 >>> ke = KemenyOrder(g,orderLimit=10)

7 >>> ke.kemenyRanking

8 [426464, 773909, 155874, 815552, 567308, 298061, 928564, 279729, 668947,

→˓ 578560]

Note: It is therefore important to always keep in mind that, based on pairwise outrank-
ing situations, there does not exist any unique optimal ranking; especially when we

140

face such big data problems. Changing the number of quantiles, the component ranking
rule, the optimised quantile ordering strategy, all this will indeed produce, sometimes
even substantially, diverse global ranking results.

Back to Content Table (page 1)

3 Evaluation and decision case studies

3.1 Alice’s best choice: A selection case studyPage 141, 19

� The decision problem (page 142)

� The performance tableau (page 143)

� Building a best choice recommendation (page 146)

� Robustness analysis (page 152)

Alice D. , 19 years old German student finishing her secondary studies
in Köln (Germany), desires to undertake foreign languages studies. She will probably
receive her “Abitur” with satisfactory and/or good marks and wants to start her further
studies thereafter.

She would not mind staying in Köln, yet is ready to move elsewhere if necessary. The
length of the higher studies do concern her, as she wants to earn her life as soon as
possible. Her parents however agree to financially support her study fees, as well as, her
living costs during her studies.

19 This case study is inspired by aMultiple Criteria Decision Analysis case study published in Eisenführ
Fr., Langer Th., and Weber M., Fallstudien zu rationalem Entscheiden, Springer 2001, pp. 1-17.

141

The decision problem

Alice has already identified 10 potential study programs.

Table 3.1: Alice’s potential study programs

ID Diploma Institution City

T-UD Qualified translator (T) University (UD) Düsseldorf
T-FHK Qualified translator (T) Higher Technical School (FHK) Köln
T-FHM Qualified translator (T) Higher Technical School (FHM) München
I-FHK Graduate interpreter (I) Higher Technical School (FHK) Köln
T-USB Qualified translator (T) University (USB) Saarbrücken
I-USB Graduate interpreter (I) University (USB) Saarbrücken
T-UHB Qualified translator (T) University (UHB) Heidelberg
I-UHB Graduate interpreter (I) University (UHB) Heidelberg
S-HKK Specialized secretary (S) Chamber of Commerce (HKK) Köln
C-HKK Foreign correspondent (C) Chamber of Commerce (HKK) Köln

In Table 3.1 we notice that Alice considers three Graduate Interpreter studies (8 or 9
Semesters), respectively in Köln, in Saarbrücken or in Heidelberg; and five Qualified
translator studies (8 or 9 Semesters), respectively in Köln, in Düsseldorf, in Saarbrücken,
in Heidelberg or in Munich. She also considers two short (4 Semesters) study programs
at the Chamber of Commerce in Köln.

Four decision objectives of more or less equal importance are guiding Alice’s choice:

1. maximize the attractiveness of the study place (GEO),

2. maximize the attractiveness of her further studies (LEA),

3. minimize her financial dependency on her parents (FIN),

4. maximize her professional perspectives (PRA).

The decision consequences Alice wishes to take into account for evaluating the potential
study programs with respect to each of the four objectives are modelled by the following
coherent family of criteriaPage 89, 26.

142

Table 3.2: Alice’s family of performance criteria

ID Name Comment Objective Weight

DH Proximity Distance in km to her home (min) GEO 3
BC Big City Number of inhabitants (max) GEO 3

AS Studies Attractiveness of the studies (max) LEA 6

SF Fees Annual study fees (min) FIN 2
LC Living Monthly living costs (min) FIN 2
SL Length Length of the studies (min) FIN 2

AP Profession Attractiveness of the profession (max) PRA 2
AI Income Annual income after studying (max) PRA 2
PR Prestige Occupational prestige (max) PRA 2

Within each decision objective, the performance criteria are considered to be equisignifi-
cant. Hence, the four decision objectives show a same importance weight of 6 (see Table
3.2).

The performance tableau

The actual evaluations of Alice’s potential study programs are stored in a file named
AliceChoice.py of PerformanceTableau format21.

Listing 3.1: Alice’s performance tableau

1 >>> from perfTabs import PerformanceTableau

2 >>> t = PerformanceTableau('AliceChoice')

3 >>> t.showObjectives()

4 *------ decision objectives -------"

5 GEO: Geographical aspect

6 DH Distance to parent's home 3

7 BC Number of inhabitants 3

8 Total weight: 6 (2 criteria)

9 LEA: Learning aspect

10 AS Attractiveness of the study program 6

11 Total weight: 6.00 (1 criteria)

12 FIN: Financial aspect

(continues on next page)

21 Alice’s performance tableau AliceChoice.py is available in the examples directory of the Digraph3
software collection.

143

_static/AliceChoice.py

(continued from previous page)

13 SF Annual registration fees 2

14 LC Monthly living costs 2

15 SL Study time 2

16 Total weight: 6.00 (3 criteria)

17 PRA: Professional aspect

18 AP Attractiveness of the profession 2

19 AI Annual professional income after studying 2

20 OP Occupational Prestige 2

21 Total weight: 6.00 (3 criteria)

Details of the performance criteria may be consulted in a browser view (see Fig. 3.1
below).

>>> t.showHTMLCriteria()

Fig. 3.1: Alice’s performance criteria

It is worthwhile noticing in Fig. 3.1 above that, on her subjective attractiveness scale of
the study programs (criterion AS), Alice considers a performance differences of 7 points
to be considerable and triggering, the case given, a polarisation of the outranking state-
ment. Notice also the proportional indifference (1%) and preference (5%) discrimination
thresholds shown on criterion BC -number of inhabitants.

In the following heatmap view, we may now consult Alice’s performance evaluations.

>>> t.showHTMLPerformanceHeatmap(\

... colorLevels=5,Correlations=True,ndigits=0)

144

Fig. 3.2: Heatmap of Alice’s performance tableau

Alice is subjectively evaluating the Attractiveness of the studies (criterion AS) on an
ordinal scale from 0 (weak) to 10 (excellent). Similarly, she is subjectively evaluating the
Attractiveness of the respective professions (criterion AP) on a three level ordinal scale
from 0 (weak), 1 (fair) to 2 (good). Considering the Occupational Prestige (criterion
OP), she looked up the SIOPS20. All the other evaluation data she found on the internet
(see Fig. 3.2).

Notice by the way that evaluations on performance criteria to be minimized, like Distance
to Home (criterion DH) or Study time (criterion SL), are registered as negative values,
so that smaller measures are, in this case, preferred to larger ones.

Her ten potential study programs are ordered with the NetFlows ranking rule applied to
the corresponding bipolar-valued outranking digraph23. Graduate interpreter studies in
Köln (I-FHK) or Saarbrücken (I-USB), followed by Qualified Translator studies in Köln
(T-FHK) appear to be Alice’s most preferred alternatives. The least attractive study
programs for her appear to be studies at the Chamber of Commerce of Köln (C-HKK,
S-HKK).

It is finally interesting to observe in Fig. 3.2 (third row) that the most significant perfor-
mance criteria, appear to be for Alice, on the one side, the Attractiveness of the study
program (criterion AS, tau = +0.72) followed by the Attractiveness of the future profes-
sion (criterion AP, tau = +0.62). On the other side, Study times (criterion SL, tau =

20 Ganzeboom H.B.G, Treiman D.J. “Internationally Comparable Measures of Occupational Status
for the 1988 International Standard Classification of Occupations”, Social Science Research 25, 201–239
(1996).

23 See the tutorial on ranking with multiple incommensurable criteria (page 72).

145

-0.24), Big city (criterion BC, tau = -0.07) as well as Monthly living costs (criterion LC,
tau = -0.04) appear to be for her not so significant27.

Building a best choice recommendation

Let us now have a look at the resulting pairwise outranking situations.

Listing 3.2: Alice’s outranking digraph

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> dg = BipolarOutrankingDigraph(t)

3 >>> dg

4 *------- Object instance description ------*

5 Instance class : BipolarOutrankingDigraph

6 Instance name : rel_AliceChoice

7 # Actions : 10

8 # Criteria : 9

9 Size : 67

10 Determinateness (%) : 73.91

11 Valuation domain : [-1.00;1.00]

12 >>> dg.computeSymmetryDegree(Comments=True)

13 Symmetry degree of graph <rel_AliceChoice> : 0.49

From Alice’s performance tableau we obtain 67 positively validated pairwise outranking
situations in the digraph dg, supported by a 74% majority of criteria significance (see
Listing 3.2 Line 9-10).

Due to the poorly discriminating performance evaluations, nearly half of these outrank-
ing situations (see Line 13) are symmetric and reveal actually more or less indifference
situations between the potential study programs. This is well illustrated in the relation
map of the outranking digraph (see Fig. 3.3).

>>> dg.showHTMLRelationMap(

... tableTitle='Outranking relation map',

... rankingRule='Copeland')

27 See also the corresponding Advanced Topic in the Digraph3 documentation.

146

Fig. 3.3: ‘Copeland’-ranked outranking relation map

We have mentioned that Alice considers a performance difference of 7 points on the At-
tractiveness of studies criterion AS to be considerable which triggers, the case given, a
potential polarisation of the outranking characteristics. In Fig. 3.3 above, these polari-
sations appear in the last column and last row. We may inspect the occurrence of such
polarisations as follows.

Listing 3.3: Polarised outranking situations

1 >>> dg.showPolarisations()

2 *---- Negative polarisations ----*

3 number of negative polarisations : 3

4 1: r(S-HKK >= I-FHK) = -0.17

5 criterion: AS

6 Considerable performance difference : -7.00

7 Veto discrimination threshold : -7.00

8 Polarisation: r(S-HKK >= I-FHK) = -0.17 ==> -1.00

9 2: r(S-HKK >= I-USB) = -0.17

10 criterion: AS

11 Considerable performance difference : -7.00

12 Veto discrimination threshold : -7.00

13 Polarisation: r(S-HKK >= I-USB) = -0.17 ==> -1.00

14 3: r(S-HKK >= I-UHB) = -0.17

15 criterion: AS
(continues on next page)

147

(continued from previous page)

16 Considerable performance difference : -7.00

17 Veto discrimination threshold : -7.00

18 Polarisation: r(S-HKK >= I-UHB) = -0.17 ==> -1.00

19 *---- Positive polarisations ----*

20 number of positive polarisations: 3

21 1: r(I-FHK >= S-HKK) = 0.83

22 criterion: AS

23 Considerable performance difference : 7.00

24 Counter-veto threshold : 7.00

25 Polarisation: r(I-FHK >= S-HKK) = 0.83 ==> +1.00

26 2: r(I-USB >= S-HKK) = 0.17

27 criterion: AS

28 Considerable performance difference : 7.00

29 Counter-veto threshold : 7.00

30 Polarisation: r(I-USB >= S-HKK) = 0.17 ==> +1.00

31 3: r(I-UHB >= S-HKK) = 0.17

32 criterion: AS

33 Considerable performance difference : 7.00

34 Counter-veto threshold : 7.00

35 Polarisation: r(I-UHB >= S-HKK) = 0.17 ==> +1.00

In Listing 3.3, we see that considerable performance differences concerning the Attractive-
ness of the studies (AS criterion) are indeed observed between the Specialised Secretary
study programm offered in Köln and the Graduate Interpreter study programs offered
in Köln, Saarbrücken and Heidelberg. They polarise, hence, three more or less invalid
outranking situations to certainly invalid (Lines 8, 13, 18) and corresponding three more
or less valid converse outranking situations to certainly valid ones (Lines 25, 30, 35).

We may finally notice in the relation map, shown in Fig. 3.3, that the four best-ranked
study programs, I-FHK, I-USB, I-UHB and T-FHK, are in fact Condorcet winners (see
Listing 3.4 Line 2), i.e. they are all four indifferent one of the other and positively outrank
all other alternatives, a result confirmed below by our best choice recommendation (Line
8).

Listing 3.4: Alice’s best choice recommendation

1 >>> dg.computeCondorcetWinners()

2 ['I-FHK', 'I-UHB', 'I-USB', 'T-FHK']

3 >>> dg.showBestChoiceRecommendation()

4 Best choice recommendation(s) (BCR)

5 (in decreasing order of determinateness)

6 Credibility domain: [-1.00,1.00]

7 === >> potential first choice(s)

8 choice : ['I-FHK','I-UHB','I-USB','T-FHK']

9 independence : 0.17

10 dominance : 0.08

11 absorbency : -0.83

(continues on next page)

148

(continued from previous page)

12 covering (%) : 62.50

13 determinateness (%) : 68.75

14 most credible action(s) = {'I-FHK': 0.75,'T-FHK': 0.17,

15 'I-USB': 0.17,'I-UHB': 0.17}

16 === >> potential last choice(s)

17 choice : ['C-HKK', 'S-HKK']

18 independence : 0.50

19 dominance : -0.83

20 absorbency : 0.17

21 covered (%) : 100.00

22 determinateness (%) : 58.33

23 most credible action(s) = {'S-HKK': 0.17,'C-HKK': 0.17}

Most credible best choice among the four best-ranked study programs eventually becomes
the Graduate Interpreter study program at the Technical High School in Köln (see Listing
3.4 Line 14) supported by a (0.75 + 1)/2.0 = 87.5% (18/24) majority of global criteria
significance24.

In the relation map, shown in Fig. 3.3, we see in the left lower corner that the asym-
metric part of the outranking relation, i.e. the corresponding strict outranking relation,
is actually transitive (see Listing 3.5 Line 2). Hence, a graphviz drawing of its skeleton,
oriented by the previous best, respectively worst choice, may well illustrate our best choice
recommendation.

24 See also the Advanced Topic about computing best choice membership characteristics in the Di-
graph3 documentation.

149

Listing 3.5: Drawing the best choice recommendation

1 >>> dgcd = ~(-dg)

2 >>> dgcd.isTransitive()

3 True

4 >>> dgcd.closeTransitive(Reverse=True,InSite=True)

5 >>> dgcd.exportGraphViz('aliceBestChoice',

6 ... bestChoice=['I-FHK'],

7 ... worstChoice=['S-HKK','C-HKK'])

8 *---- exporting a dot file for GraphViz tools ---------*

9 Exporting to aliceBestChoice.dot

10 dot -Grankdir=BT -Tpng aliceBestChoice.dot -o aliceBestChoice.png

Fig. 3.4: Alice’s best choice recommendation

In Fig. 3.4 we notice that the Graduate Interpreter studies come first, followed by the
Qualified Translator studies. Last come the Chamber of Commerce’s specialised studies.
This confirms again the high significance that Alice attaches to the attractiveness of her
further studies and of her future profession (see criteria AS and AP in Fig. 3.2).

Let us now, for instance, check the pairwise outranking situations observed between the
first and second-ranked alternative, i.e. Garduate Interpreter studies in Köln versus
Graduate Interpreter studies in Saabrücken (see I-FHK and I-USB in Fig. 3.2).

>>> dg.showHTMLPairwiseOutrankings('I-FHK','I-USB')

150

Fig. 3.5: Comparing the first and second best-ranked study programs

The Köln alternative is performing at least as well as the Saarbrücken alternative on
all the performance criteria, except the Annual income (of significance 2/24). Conversely,
the Saarbrücken alternative is clearly outperformed from the geographical (0/6) as well
as from the financial perspective (2/6).

In a similar way, we may finally compute a weak ranking of all the potential study
programs with the help of the RankingByChoosingDigraph constructor (see Listing 3.6
below), who computes a bipolar ranking by conjointly best-choosing and last-rejecting
[BIS-1999].

151

Listing 3.6: Weakly ranking by bipolar best-choosing and
last-rejecting

1 >>> from transitiveDigraphs import\

2 ... RankingByChoosingDigraph

3

4 >>> rbc = RankingByChoosingDigraph(dg)

5 >>> rbc.showRankingByChoosing()

6 Ranking by Choosing and Rejecting

7 1st ranked ['I-FHK']

8 2nd ranked ['I-USB']

9 3rd ranked ['I-UHB']

10 4th ranked ['T-FHK']

11 5th ranked ['T-UD']

12 5th last ranked ['T-UD']

13 4th last ranked ['T-UHB', 'T-USB']

14 3rd last ranked ['T-FHM']

15 2nd last ranked ['C-HKK']

16 1st last ranked ['S-HKK']

In Listing 3.6, we find confirmed that the Interpreter studies appear all preferrred to the
Translator studies. Furthermore, the Interpreter studies in Saarbrücken appear preferred
to the same studies in Heidelberg. The Köln alternative is apparently the preferred one of
all the Translater studies. And, the Foreign Correspondent and the Specialised Secretary
studies appear second-last and last ranked.

Yet, how robust are our findings with respect to potential settings of the decision objec-
tives’ importance and the performance criteria significance ?

Robustness analysis

Alice considers her four decision objectives as being more or less equally important. Here
we have, however, allocated strictly equal importance weights with strictly equi-significant
criteria per objective. How robust is our previous best choice recommendation when, now,
we would consider the importance of the objectives and, hence, the significance of the
respective performance criteria to be more or less uncertain ?

To answer this question, we will consider the respective criteria significance weights wj
to be triangular random variables in the range 0 to 2wj with mode = wj. We may
compute a corresponding 90%-confident outranking digraph with the help of the
ConfidentBipolarOutrankingDigraph constructor22.

Listing 3.7: The 90% confident outranking digraph

1 >>> from outrankingDigraphs import\

2 ... ConfidentBipolarOutrankingDigraph

(continues on next page)

22 See also the corresponding Advanced Topic in the Digraph3 documentation.

152

(continued from previous page)

3

4 >>> cdg = ConfidentBipolarOutrankingDigraph(t,

5 ... distribution='triangular',confidence=90.0)

6

7 >>> cdg

8 *------- Object instance description ------*

9 Instance class : ConfidentBipolarOutrankingDigraph

10 Instance name : rel_AliceChoice_CLT

11 # Actions : 10

12 # Criteria : 9

13 Size : 44

14 Valuation domain : [-1.00;1.00]

15 Uncertainty model : triangular(a=0,b=2w)

16 Likelihood domain : [-1.0;+1.0]

17 Confidence level : 90.0%

18 Confident majority : 14/24 (58.3%)

19 Determinateness (%) : 68.19

Of the original 67 valid outranking situations, we retain 44 outranking situations as being
90%-confident (see Listing 3.7 Line 11). The corresponding 90%-confident qualified
majority of criteria significance amounts to 14/24 = 58.3% (Line 15).

Concerning now a 90%-confident best choice recommendation, we are lucky (see Listing
3.8 below).

Listing 3.8: The 90% confident best choice recommenda-
tion

1 >>> cdg.computeCondorcetWinners()

2 ['I-FHK']

3 >>> cdg.showBestChoiceRecommendation()

4 ***********************

5 Best choice recommendation(s) (BCR)

6 (in decreasing order of determinateness)

7 Credibility domain: [-1.00,1.00]

8 === >> potential first choice(s)

9 choice : ['I-FHK','I-UHB','I-USB',

10 'T-FHK','T-FHM']

11 independence : 0.00

12 dominance : 0.42

13 absorbency : 0.00

14 covering (%) : 20.00

15 determinateness (%) : 61.25

16 - most credible action(s) = { 'I-FHK': 0.75, }

The Graduate Interpreter studies in Köln remain indeed a 90%-confident Condorcet win-
ner (Line 2). Hence, the same study program also remains our 90%-confident most cred-
ible best choice supported by a continual 18/24 (87.5%) majority of the global criteria

153

significance (see Lines 9-10 and 16).

When previously comparing the two best-ranked study programs (see Fig. 3.5), we have
observed that I-FHK actually positively outranks I-USB on all four decision objectives.
When admitting equi-significant criteria significance weights per objective, this outrank-
ing situation is hence valid independently of the importance weights Alice may allocate
to each of her decision objectives.

We may compute these unopposed outranking situations25 with help of the
UnOpposedBipolarOutrankingDigraph constructor.

Listing 3.9: Computing the unopposed outranking situ-
ations

1 >>> from outrankingDigraphs import UnOpposedBipolarOutrankingDigraph

2 >>> uop = UnOpposedBipolarOutrankingDigraph(t)

3 >>> uop

4 *------- Object instance description ------*

5 Instance class : UnOpposedBipolarOutrankingDigraph

6 Instance name : AliceChoice_unopposed_outrankings

7 # Actions : 10

8 # Criteria : 9

9 Size : 28

10 Oppositeness (%) : 58.21

11 Determinateness (%) : 62.94

12 Valuation domain : [-1.00;1.00]

13 >>> uop.isTransitive()

14 True

We keep 28 out the 67 standard outranking situations, which leads to an oppositeness
degree of (1.0 - 28/67) = 58.21% (Listing 3.9 Line 10). Remarkable furthermore is that
this unopposed outranking digraph uop is actually transitive, i.e. modelling a partial
ranking of the study programs (Line 14).

We may hence make use of the exportGraphViz() method of the TransitiveDigraph

class for drawing the corresponding partial ranking.

1 >>> from transitiveDigraphs import TransitiveDigraph

2 >>> TransitiveDigraph.exportGraphViz(uop,

3 ... fileName='choice_unopposed')

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to choice_unopposed.dot

6 dot -Grankdir=TB -Tpng choice_unopposed.dot -o choice_unopposed.png

25 See also the corresponding Advanced Topic in the Digraph3 documentation.

154

Fig. 3.6: Unopposed partial ranking of the potential study programs

Again, when equi-signficant performance criteria are assumed per decision objective, we
observe in Fig. 3.6 that I-FHK remains the stable best choice, independently of the actual
importance weights that Alice may wish to allocate to her four decision objectives.

In view of her performance tableau in Fig. 3.2, Graduate Interpreter studies at the Tech-
nical High School Köln, thus, represent definitely Alice’s very best choice.

For further reading about the Rubis Best Choice methodology, one may consult in
[BIS-2015] the study of a real decision aid case about choosing a best poster in a scientific
conference.

Back to Content Table (page 1)

155

3.2 The best academic Computer Science Depts: a ranking case

study

� The THE performance tableau (page 156)

� Ranking with multiple incommensurable criteria of ordinal significance (page 162)

� How to judge the quality of a ranking result? (page 170)

In this tutorial, we are studying a ranking decision problem based on published data from
the Times Higher Education (THE) World University Rankings 2016 by Computer Sci-
ence (CS) subject36. Several hundred academic CS Departments, from all over the world,
were ranked that year following an overall numerical score based on the weighted average
of five performance criteria: Teaching (the learning environment, 30%), Research (vol-
ume, income and reputation, 30%), Citations (research influence, 27.5%), International
outlook (staff, students, and research, 7.5%), and Industry income (innovation, 5%).

To illustrate our Digraph3 programming resources, we shall first have a look into the
THE ranking data with short Python scripts. In a second Section, we shall relax the
commensurability hypothesis of the ranking criteria and show how to similarly rank with
multiple incommensurable performance criteria of ordinal significance. A third Section
is finally devoted to introduce quality measures for qualifying ranking results.

The THE performance tableau

For our tutorial purpose, an extract of the published THE University rankings 2016 by
computer science subject data, concerning the 75 first-ranked academic Institutions, is
stored in a file named the_cs_2016.py of PerformanceTableau format37.

Listing 3.10: The 2016 THE World University Ranking
by CS subject

1 >>> from perfTabs import PerformanceTableau

2 >>> t = PerformanceTableau('the_cs_2016')

3 >>> t

4 *------- PerformanceTableau instance description ------*

5 Instance class : PerformanceTableau

6 Instance name : the_cs_2016

7 # Actions : 75

8 # Objectives : 5

9 # Criteria : 5

10 NaN proportion (%) : 0.0

11 Attributes : ['name', 'description', 'actions',

(continues on next page)

36 https://www.timeshighereducation.com/world-university-rankings/2017/subject-ranking/
computer-science#!/page/0/length/25/sort_by/rank/sort_order/asc/cols/scores

37 The performance tableau the_cs_2016.py is also available in the examples directory of the Di-
graph3 software collection.

156

_static/the_cs_2016.py
https://www.timeshighereducation.com/world-university-rankings/2017/subject-ranking/computer-science#!/page/0/length/25/sort_by/rank/sort_order/asc/cols/scores
https://www.timeshighereducation.com/world-university-rankings/2017/subject-ranking/computer-science#!/page/0/length/25/sort_by/rank/sort_order/asc/cols/scores

(continued from previous page)

12 'objectives', 'criteria',

13 'weightPreorder', 'NA', 'evaluation']

Potential decision actions, in our case here, are the 75 THE best-ranked CS Departments,
all of them located at world renowned Institutions, like California Institute of Technology,
Swiss Federal Institute of Technology Zurich, Technical University München, University
of Oxford or the National University of Singapore (see Listing 3.11 below).

Instead of using prefigured Digraph3 show methods, readily available for inspecting
PerformanceTableau instances, we will illustrate below how to write small Python scripts
for printing out its content.

Listing 3.11: Printing the potential decision actions

1 >>> for x in t.actions:

2 ... print('%s :\t%s (%s)' %\

3 ... (x,t.actions[x]['name'],t.actions[x]['comment']))

4

5 albt: University of Alberta (CA)

6 anu: Australian National University (AU)

7 ariz: Arizona State University (US)

8 bju: Beijing University (CN)

9 bro: Brown University (US)

10 calt: California Institute of Technology (US)

11 cbu: Columbia University (US)

12 chku: Chinese University of Hong Kong (HK)

13 cihk: City University of Hong Kong (HK)

14 cir: University of California at Irvine (US)

15 cmel: Carnegie Mellon University (US)

16 cou: Cornell University (US)

17 csb: University of California at Santa Barbara (US)

18 csd: University Of California at San Diego (US)

19 dut: Delft University of Technology (NL)

20 eind: Eindhoven University of Technology (NL)

21 ens: Superior Normal School at Paris (FR)

22 epfl: Swiss Federal Institute of Technology Lausanne (CH)

23 epfr: Polytechnic school of Paris (FR)

24 ethz: Swiss Federal Institute of Technology Zurich (CH)

25 frei: University of Freiburg (DE)

26 git: Georgia Institute of Technology (US)

27 glas: University of Glasgow (UK)

28 hels: University of Helsinki (FI)

29 hkpu: Hong Kong Polytechnic University (CN)

30 hkst: Hong Kong University of Science and Technology (HK)

31 hku: Hong Kong University (HK)

32 humb: Berlin Humboldt University (DE)

33 icl: Imperial College London (UK)

(continues on next page)

157

(continued from previous page)

34 indis: Indian Institute of Science (IN)

35 itmo: ITMO University (RU)

36 kcl: King's College London (UK)

37 kist: Korea Advances Institute of Science and Technology (KR)

38 kit: Karlsruhe Institute of Technology (DE)

39 kth: KTH Royal Institute of Technology (SE)

40 kuj: Kyoto University (JP)

41 kul: Catholic University Leuven (BE)

42 lms: Lomonosov Moscow State University (RU)

43 man: University of Manchester (UK)

44 mcp: University of Maryland College Park (US)

45 mel: University of Melbourne (AU)

46 mil: Polytechnic University of Milan (IT)

47 mit: Massachusetts Institute of Technology (US)

48 naji: Nanjing University (CN)

49 ntu: Nanyang Technological University of Singapore (SG)

50 ntw: National Taiwan University (TW)

51 nyu: New York University (US)

52 oxf: University of Oxford (UK)

53 pud: Purdue University (US)

54 qut: Queensland University of Technology (AU)

55 rcu: Rice University (US)

56 rwth: RWTH Aachen University (DE)

57 shJi: Shanghai Jiao Tong University (CN)

58 sing: National University of Singapore (SG)

59 sou: University of Southhampton (UK)

60 stut: University of Stuttgart (DE)

61 tech: Technion - Israel Institute of Technology (IL)

62 tlavu: Tel Aviv University (IR)

63 tsu: Tsinghua University (CN)

64 tub: Technical University of Berlin (DE)

65 tud: Technical University of Darmstadt (DE)

66 tum: Technical University of München (DE)

67 ucl: University College London (UK)

68 ued: University of Edinburgh (UK)

69 uiu: University of Illinois at Urbana-Champagne (US)

70 unlu: University of Luxembourg (LU)

71 unsw: University of New South Wales (AU)

72 unt: University of Toronto (CA)

73 uta: University of Texas at Austin (US)

74 utj: University of Tokyo (JP)

75 utw: University of Twente (NL)

76 uwa: University of Waterloo (CA)

77 wash: University of Washington (US)

78 wtu: Vienna University of Technology (AUS)

79 zhej: Zhejiang University (CN)

158

The THE authors base their ranking decisions on five objectives.

1 >>> for obj in t.objectives:

2 ... print('%s : %s (%.1f %%),\n\t%s ' \

3 ... % (obj,t.objectives[obj]['name'],

4 ... t.objectives[obj]['weight'],

5 ... t.objectives[obj]['comment'])

6 ...)

7

8 Teaching: Best learning environment (30.0%),

9 Reputation survey; Staff-to-student ration;

10 Doctorate-to-student ratio,

11 Doctorate-to-academic-staff ratio, Institutional income.

12 Research: Highest volume and repustation (30.0%),

13 Reputation survey; Research income; Research productivity

14 Citations: Highest research influence (27.5%),

15 Impact.

16 International outlook: Most international staff, students and research␣

→˓(7.5%),

17 Proportions of international students; of international staff;

18 international collaborations.

19 Industry income: Best knowledge transfer (5.0%),

20 Volume.

With a cumulated importance of 87% (see above), Teaching, Research and Citations rep-
resent clearly the major ranking objectives. International outlook and Industry income
are considered of minor importance (12.5%).

THE does, unfortunately, not publish the detail of their performance assessments for
grading CS Depts with respect to each one of the five ranking objectives39. The THE
2016 ranking publication reveals solely a compound assessment on a single performance
criteria per ranking objective. The five retained performance criteria may be printed out
as follows.

1 >>> for g in t.criteria:

2 ... print('%s :\t%s , %s (%.1f %%)' \

3 ... % (g,t.criteria[g]['name'],t.criteria[g]['comment'],

4 ... t.criteria[g]['weight']))

5

6 gtch: Teaching, The learning environment (30.0%)

7 gres: Research, Volume, income and reputation (30.0%)

8 gcit: Citations, Research influence (27.5%)

9 gint: International outlook, In staff, students and research (7.5

→˓%)

10 gind: Industry income, knowledge transfer (5.0%)

39 https://www.timeshighereducation.com/sites/default/files/styles/article785xauto/public/wur_
graphic_1.jpg?itok=XS6NcZfL gives some insight on the subject and significance of the actual
performance criteria used for grading along each ranking objective.

159

https://www.timeshighereducation.com/sites/default/files/styles/article785xauto/public/wur_graphic_1.jpg?itok=XS6NcZfL
https://www.timeshighereducation.com/sites/default/files/styles/article785xauto/public/wur_graphic_1.jpg?itok=XS6NcZfL

The largest part (87.5%) of criteria significance is, hence canonically, allocated to the
major ranking criteria: Teaching (30%), Research (30%) and Citations (27.5%). The
small remaining part (12.5%) goes to International outlook (7.5%) and Industry income
(5%).

In order to render commensurable these performance criteria, the THE authors replace,
per criterion, the actual performance grade obtained by each University with the cor-
responding quantile observed in the cumulative distribution of the performance grades
obtained by all the surveyed institutions40. The THE ranking is eventually determined
by an overall score per University which corresponds to the weighted average of these
five criteria quantiles (see Listing 3.12 below).

Listing 3.12: Computing the THE overall scores

1 >>> theScores = []

2 >>> for x in t.actions:

3 ... xscore = Decimal('0')

4 ... for g in t.criteria:

5 ... xscore += t.evaluation[g][x] *\

6 ... (t.criteria[g]['weight']/Decimal('100'))

7 ... theScores.append((xscore,x))

In Listing 3.13 Lines 15-16 below, we may thus notice that, in the 2016 edition of the
THE World University rankings by CS subject, the Swiss Federal Institute of Technology
Zürich is first-ranked with an overall score of 92.9; followed by the California Institute
of Technology (overall score: 92.4)38.

Listing 3.13: Printing the ranked performance table

1 >>> theScores.sort(reverse = True)

2 >>> print('## Univ \tgtch gres gcit gint gind overall')

3 >>> print('---')

4 >>> i = 1

5 >>> for it in theScores:

6 ... x = it[1]

7 ... xScore = it[0]

8 ... print('%2d : %s ' % (i,x), end=' \t')

9 ... for g in t.criteria:

10 ... print('%.1f ' % (t.evaluation[g][x]),end=' ')

11 ... print(' %.1f ' % xScore)

12 ... i += 1

13

14 ## Univ gtch gres gcit gint gind overall

15 ---

16 1: ethz 89.2 97.3 97.1 93.6 64.1 92.9

17 2: calt 91.5 96.0 99.8 59.1 85.9 92.4
(continues on next page)

40 https://www.timeshighereducation.com/world-university-rankings/methodology-world-university-rankings-2016-2017
38 The author’s own Computer Science Dept at the University of Luxembourg was ranked on position

63 with an overall score of 58.0.

160

https://www.timeshighereducation.com/world-university-rankings/methodology-world-university-rankings-2016-2017

(continued from previous page)

18 3: oxf 94.0 92.0 98.8 93.6 44.3 92.2

19 4: mit 87.3 95.4 99.4 73.9 87.5 92.1

20 5: git 87.2 99.7 91.3 63.0 79.5 89.9

21 6: cmel 88.1 92.3 99.4 58.9 71.1 89.4

22 7: icl 90.1 87.5 95.1 94.3 49.9 89.0

23 8: epfl 86.3 91.6 94.8 97.2 42.7 88.9

24 9: tum 87.6 95.1 87.9 52.9 95.1 87.7

25 10: sing 89.9 91.3 83.0 95.3 50.6 86.9

26 11: cou 81.6 94.1 99.7 55.7 45.7 86.6

27 12: ucl 85.5 90.3 87.6 94.7 42.4 86.1

28 13: wash 84.4 88.7 99.3 57.4 41.2 85.6

29 14: hkst 74.3 92.0 96.2 84.4 55.8 85.5

30 15: ntu 76.6 87.7 90.4 92.9 86.9 85.5

31 16: ued 85.7 85.3 89.7 95.0 38.8 85.0

32 17: unt 79.9 84.4 99.6 77.6 38.4 84.4

33 18: uiu 85.0 83.1 99.2 51.4 42.2 83.7

34 19: mcp 79.7 89.3 94.6 29.8 51.7 81.5

35 20: cbu 81.2 78.5 94.7 66.9 45.7 81.3

36 21: tsu 88.1 90.2 76.7 27.1 85.9 80.9

37 22: csd 75.2 81.6 99.8 39.7 59.8 80.5

38 23: uwa 75.3 82.6 91.3 72.9 41.5 80.0

39 24: nyu 71.1 77.4 99.4 78.0 39.8 79.7

40 25: uta 72.6 85.3 99.6 31.6 49.7 79.6

41 26: kit 73.8 85.5 84.4 41.3 76.8 77.9

42 27: bju 83.0 85.3 70.1 30.7 99.4 77.0

43 28: csb 65.6 70.9 94.8 72.9 74.9 76.2

44 29: rwth 77.8 85.0 70.8 43.7 89.4 76.1

45 30: hku 77.0 73.0 77.0 96.8 39.5 75.4

46 31: pud 76.9 84.8 70.8 58.1 56.7 75.2

47 32: kist 79.4 88.2 64.2 31.6 92.8 74.9

48 33: kcl 45.5 94.6 86.3 95.1 38.3 74.8

49 34: chku 64.1 69.3 94.7 75.6 49.9 74.2

50 35: epfr 81.7 60.6 78.1 85.3 62.9 73.7

51 36: dut 64.1 78.3 76.3 69.8 90.1 73.4

52 37: tub 66.2 82.4 71.0 55.4 99.9 73.3

53 38: utj 92.0 91.7 48.7 25.8 49.6 72.9

54 39: cir 68.8 64.6 93.0 65.1 40.4 72.5

55 40: ntw 81.5 79.8 66.6 25.5 67.6 72.0

56 41: anu 47.2 73.0 92.2 90.0 48.1 70.6

57 42: rcu 64.1 53.8 99.4 63.7 46.1 69.8

58 43: mel 56.1 70.2 83.7 83.3 50.4 69.7

59 44: lms 81.5 68.1 61.0 31.1 87.8 68.4

60 45: ens 71.8 40.9 98.7 69.6 43.5 68.3

61 46: wtu 61.8 73.5 73.7 51.9 62.2 67.9

62 47: tech 54.9 71.0 85.1 51.7 40.1 67.1

63 48: bro 58.5 54.9 96.8 52.3 38.6 66.5

(continues on next page)

161

(continued from previous page)

64 49: man 63.5 71.9 62.9 84.1 42.1 66.3

65 50: zhej 73.5 70.4 60.7 22.6 75.7 65.3

66 51: frei 54.2 51.6 89.5 49.7 99.9 65.1

67 52: unsw 60.2 58.2 70.5 87.0 44.3 63.6

68 53: kuj 75.4 72.8 49.5 28.3 51.4 62.8

69 54: sou 48.2 60.7 75.5 87.4 43.2 62.1

70 55: shJi 66.9 68.3 62.4 22.8 38.5 61.4

71 56: itmo 58.0 32.0 98.7 39.2 68.7 60.5

72 57: kul 35.2 55.8 92.0 46.0 88.3 60.5

73 58: glas 35.2 52.5 91.2 85.8 39.2 59.8

74 59: utw 38.2 52.8 87.0 69.0 60.0 59.4

75 60: stut 54.2 60.6 61.1 36.3 97.8 58.9

76 61: naji 51.4 76.9 48.8 39.7 74.4 58.6

77 62: tud 46.6 53.6 75.9 53.7 66.5 58.3

78 63: unlu 35.2 44.2 87.4 99.7 54.1 58.0

79 64: qut 45.5 42.6 82.8 75.2 63.0 58.0

80 65: hkpu 46.8 36.5 91.4 73.2 41.5 57.7

81 66: albt 39.2 53.3 69.9 91.9 75.4 57.6

82 67: mil 46.4 64.3 69.2 44.1 38.5 57.5

83 68: hels 48.8 49.6 80.4 50.6 39.5 57.4

84 69: cihk 42.4 44.9 80.1 76.2 67.9 57.3

85 70: tlavu 34.1 57.2 89.0 45.3 38.6 57.2

86 71: indis 56.9 76.1 49.3 20.1 41.5 57.0

87 72: ariz 28.4 61.8 84.3 59.3 42.0 56.8

88 73: kth 44.8 42.0 83.6 71.6 39.2 56.4

89 74: humb 48.4 31.3 94.7 41.5 45.5 55.3

90 75: eind 32.4 48.4 81.5 72.2 45.8 54.4

It is important to notice that a ranking by weighted average scores requires commensurable
ranking criteria of precise decimal significance and on wich a precise decimal performance
grading is given. It is very unlikely that the THE 2016 performance assessments indeed
verify these conditions. This tutorial shows how to relax these methodological require-
ments -precise commensurable criteria and numerical assessments- by following instead
an epistemic bipolar-valued logic based ranking methodology.

Ranking with multiple incommensurable criteria of ordinal significance

Let us, first, have a critical look at the THE performance criteria.

>>> t.showHTMLCriteria(Sorted=False)

162

Fig. 3.7: The THE ranking criteria

Considering a very likely imprecision of the performance grading procedure, followed by
some potential violation of uniform distributed quantile classes, we assume here that a
performance quantile difference of up to abs(2.5)% is insignificant, whereas a difference
of abs(5)% warrants a clearly better, resp. clearly less good, performance. With
quantiles 94%, resp. 87.3%, Oxford ’s CS teaching environment, for instance, is thus
clearly better evaluated than that of the MIT (see Listing 3.12 Lines 27-28). We shall
furthermore assume that a considerable performance quantile difference of abs(60)%,
observed on the three major ranking criteria: Teaching, Research and Citations, will
trigger a veto, respectively a counter-veto against a pairwise outranking, respectively
a pairwise outranked situation [BIS-2013].

The effect of these performance discrimination thresholds on the preference modelling
may be inspected as follows.

Listing 3.14: Inspecting the performance discrimination
thresholds

1 >>> t.showCriteria()

2 *---- criteria -----*

3 gtch 'Teaching'

4 Scale = (Decimal('0.00'), Decimal('100.00'))

5 Weight = 0.300

6 Threshold ind : 2.50 + 0.00x ; percentile: 8.07

7 Threshold pref : 5.00 + 0.00x ; percentile: 15.75

8 Threshold veto : 60.00 + 0.00x ; percentile: 99.75

9 gres 'Research'

10 Scale = (Decimal('0.00'), Decimal('100.00'))

11 Weight = 0.300

12 Threshold ind : 2.50 + 0.00x ; percentile: 7.86

13 Threshold pref : 5.00 + 0.00x ; percentile: 16.14

14 Threshold veto : 60.00 + 0.00x ; percentile: 99.21

15 gcit 'Citations'

16 Scale = (Decimal('0.00'), Decimal('100.00'))

17 Weight = 0.275
(continues on next page)

163

(continued from previous page)

18 Threshold ind : 2.50 + 0.00x ; percentile: 11.82

19 Threshold pref : 5.00 + 0.00x ; percentile: 22.99

20 Threshold veto : 60.00 + 0.00x ; percentile: 100.00

21 gint 'International outlook'

22 Scale = (Decimal('0.00'), Decimal('100.00'))

23 Weight = 0.075

24 Threshold ind : 2.50 + 0.00x ; percentile: 6.45

25 Threshold pref : 5.00 + 0.00x ; percentile: 11.75

26 gind 'Industry income'

27 Scale = (Decimal('0.00'), Decimal('100.00'))

28 Weight = 0.050

29 Threshold ind : 2.50 + 0.00x ; percentile: 11.82

30 Threshold pref : 5.00 + 0.00x ; percentile: 21.51

Between 6% and 12% of the observed quantile differences are, thus, considered to be
insignificant. Similarly, between 77% and 88% are considered to be significant. Less than
1% correspond to considerable quantile differences on both the Teaching and Research
criteria; actually triggering an epistemic polarisation effect [BIS-2013].

Beside the likely imprecise performance discrimination, the precise decimal significance
weights, as allocated by the THE authors to the five ranking criteria (see Fig. 3.7 Col-
umn Weight) are, as well, quite questionable. Significance weights may carry usually
hidden strategies for rendering the performance evaluations commensurable in view of a
numerical computation of the overall ranking scores. The eventual ranking result is thus
as much depending on the precise values of the given criteria significance weights as, vice
versa, the given precise significance weights are depending on the subjectively expected
and accepted ranking results42. We will therefore drop such precise weights and, instead,
only require a corresponding criteria significance preorder: gtch = gres > gcit > gint >
gind. Teaching environment and Research volume and reputation are equally considered
most important, followed by Research influence. Than comes International outlook in
staff, students and research and, least important finally, Industry income and innovation.

Both these working hypotheses: performance discrimitation thresholds and solely ordinal
criteria significance, give us way to a ranking methodology based on robust pairwise
outranking situations [BIS-2004b]:

� We say that CS Dept x robustly outranks CS Dept y when x positively outranks
y with all significance weight vectors that are compatible with the significance
preorder : gtch = gres > gcit > gint > gind ;

� We say that CS Dept x is robustly outranked by CS Dept y when x is positively
outranked by y with all significance weight vectors that are compatible with the
significance preorder : gtch = gres > gcit > gint > gind ;

� Otherwise, CS Depts x and y are considered to be incomparable.

A corresponding digraph constructor is provided by the RobustOutrankingDigraph class.

42 In a social choice context, this potential double bind between voting profiles and election result,
corresponds to voting manipulation strategies.

164

Listing 3.15: Computing the robust outranking digraph

1 >>> from outrankingDigraphs import RobustOutrankingDigraph

2 >>> rdg = RobustOutrankingDigraph(t)

3 >>> rdg

4 *------- Object instance description ------*

5 Instance class : RobustOutrankingDigraph

6 Instance name : robust_the_cs_2016

7 # Actions : 75

8 # Criteria : 5

9 Size : 2993

10 Determinateness (%) : 78.16

11 Valuation domain : [-1.00;1.00]

12 >>> rdg.computeIncomparabilityDegree(Comments=True)

13 Incomparability degree (%) of digraph <robust_the_cs_2016>:

14 #links x<->y y: 2775, #incomparable: 102, #comparable: 2673

15 (#incomparable/#links) = 0.037

16 >>> rdg.computeTransitivityDegree(Comments=True)

17 Transitivity degree of digraph <robust_the_cs_2016>:

18 #triples x>y>z: 405150, #closed: 218489, #open: 186661

19 (#closed/#triples) = 0.539

20 >>> rdg.computeSymmetryDegree(Comments=True)

21 Symmetry degree (%) of digraph <robust_the_cs_2016>:

22 #arcs x>y: 2673, #symmetric: 320, #asymmetric: 2353

23 (#symmetric/#arcs) = 0.12

In the resulting digraph instance rdg (see Listing 3.15 Line 8), we observe 2993 such ro-
bust pairwise outranking situations validated with a mean significance of 78% (Line
9). Unfortunately, in our case here, they do not deliver any complete linear ranking rela-
tion. The robust outranking digraph rdg contains in fact 102 incomparability situations
(3.7%, Line 13); nearly half of its transitive closure is missing (46.1%, Line 18) and 12% of
the positive outranking situations correspond in fact to symmetric indifference situations
(Line 22).

Worse even, the digraph rdg admits furthermore a high number of outranking circuits.

Listing 3.16: Inspecting outranking circuits

1 >>> rdg.computeChordlessCircuits()

2 >>> rdg.showChordlessCircuits()

3 *---- Chordless circuits ----*

4 145 circuits.

5 1: ['albt', 'unlu', 'ariz', 'hels'] , credibility : 0.300

6 2: ['albt', 'tlavu', 'hels'] , credibility : 0.150

7 3: ['anu', 'man', 'itmo'] , credibility : 0.250

8 4: ['anu', 'zhej', 'rcu'] , credibility : 0.250

9 ...

10 ...
(continues on next page)

165

(continued from previous page)

11 82: ['csb', 'epfr', 'rwth'] , credibility : 0.250

12 83: ['csb', 'epfr', 'pud', 'nyu'] , credibility : 0.250

13 84: ['csd', 'kcl', 'kist'] , credibility : 0.250

14 ...

15 ...

16 142: ['kul', 'qut', 'mil'] , credibility : 0.250

17 143: ['lms', 'rcu', 'tech'] , credibility : 0.300

18 144: ['mil', 'stut', 'qut'] , credibility : 0.300

19 145: ['mil', 'stut', 'tud'] , credibility : 0.300

Among the 145 detected robust outranking circuits reported in Listing 3.16, we notice,
for instance, two outranking circuits of length 4 (see circuits #1 and #83). Let us explore
below the bipolar-valued robust outranking characteristics 𝑟(𝑥 ≿ 𝑦) of the first circuit.

Listing 3.17: Showing the relation table with stability
denotation

1 >>> rdg.showRelationTable(actionsSubset= ['albt','unlu','ariz','hels'],

2 ... Sorted=False)

3

4 * ---- Relation Table -----

5 r/(stab)| 'albt' 'unlu' 'ariz' 'hels'

6 -----|--

7 'albt' | +1.00 +0.30 +0.00 +0.00

8 | (+4) (+2) (-1) (-1)

9 'unlu' | +0.00 +1.00 +0.40 +0.00

10 | (+0) (+4) (+2) (-1)

11 'ariz' | +0.00 -0.12 +1.00 +0.40

12 | (+1) (-2) (+4) (+2)

13 'hels' | +0.45 +0.00 -0.03 +1.00

14 | (+2) (+1) (-2) (+4)

15 Valuation domain: [-1.0; 1.0]

16 Stability denotation semantics:

17 +4|-4 : unanimous outranking | outranked situation;

18 +2|-2 : outranking | outranked situation validated

19 with all potential significance weights that are

20 compatible with the given significance preorder;

21 +1|-1 : validated outranking | outranked situation with

22 the given significance weights;

23 0 : indeterminate relational situation.

In Listing 3.17, we may notice that the robust outranking circuit [‘albt’, ‘unlu’, ‘ariz’,
‘hels’] will reappear with all potential criteria significance weight vectors that are com-
patible with given preorder: gtch = gres > gcit > gint > gind. Notice also the (+1|-1)
marked outranking situations, like the one between ‘albt’ and ‘ariz’. The statement that
“Arizona State University strictly outranks University of Alberta” is in fact valid with
the precise THE weight vector, but not with all potential weight vectors compatible with

166

the given significance preorder. All these outranking situations are hence put into doubt
(𝑟(𝑥 ≿ 𝑦) = 0.00) and the corresponding CS Depts, like University of Alberta and Arizona
State University, become incomparable in a robust outranking sense.

Showing many incomparabilities and indifferences; not being transitive and containing
many robust outranking circuits; all these relational characteristics, make that no ranking
algorithm, applied to digraph rdg, does exist that would produce a unique optimal linear
ranking result. Methodologically, we are only left with ranking heuristics. In the previous
tutorial on ranking with multiple criteria (page 72) we have seen now several potential
heuristic ranking rules that may be applied to rank from a pairwise outranking digraph;
yet, delivering all potentially more or less diverging results. Considering the order of
digraph rdg (75) and the largely unequal THE criteria significance weights, we rather
opt, in this tutorial, for the NetFlows ranking rule (page 78)41. Its complexity in 𝑂(𝑛2)
is indeed quite tractable and, by avoiding potential tyranny of short majority effects,
the NetFlows rule specifically takes the ranking criteria significance into a more fairly
balanced account.

The NetFlows ranking result of the CS Depts may be computed explicitly as follows.

Listing 3.18: Computing the robust NetFlows ranking

1 >>> nfRanking = rdg.computeNetFlowsRanking()

2 >>> nfRanking

3 ['ethz', 'calt', 'mit', 'oxf', 'cmel', 'git', 'epfl',

4 'icl', 'cou', 'tum', 'wash', 'sing', 'hkst', 'ucl',

5 'uiu', 'unt', 'ued', 'ntu', 'mcp', 'csd', 'cbu',

6 'uta', 'tsu', 'nyu', 'uwa', 'csb', 'kit', 'utj',

7 'bju', 'kcl', 'chku', 'kist', 'rwth', 'pud', 'epfr',

8 'hku', 'rcu', 'cir', 'dut', 'ens', 'ntw', 'anu',

9 'tub', 'mel', 'lms', 'bro', 'frei', 'wtu', 'tech',

10 'itmo', 'zhej', 'man', 'kuj', 'kul', 'unsw', 'glas',

11 'utw', 'unlu', 'naji', 'sou', 'hkpu', 'qut', 'humb',

12 'shJi', 'stut', 'tud', 'tlavu', 'cihk', 'albt', 'indis',

13 'ariz', 'kth', 'hels', 'eind', 'mil']

We actually obtain a very similar ranking result as the one obtained with the THE overall
scores. The same group of seven Depts: ethz, calt, mit, oxf, cmel, git and epfl, is top-
ranked. And a same group of Depts: tlavu, cihk, indis, ariz, kth, ‘hels, eind, and mil
appears at the end of the list.

We may print out the difference between the overall scores based THE ranking and
our NetFlows ranking with the following short Python script, where we make use of an
ordered Python dictionary with net flow scores, stored in the rdg.netFlowsRankingDict
attribute by the previous computation.

41 The reader might try other ranking rules, like Copeland ’s, Kohler ’s, Tideman’s rule or the iterated
versions of the NetFlows and Copeland ’s rule. Mind that the latter ranking-by-choosing rules are more
complex.

167

Listing 3.19: Comparing the robust NetFlows ranking
with the THE ranking

1 >>> # rdg.netFlowsRankingDict: ordered dictionary with net flow

2 >>> # scores stored in rdg by the computeNetFlowsRanking() method

3 >>> # theScores = [(xScore_1,x_1), (xScore_2,x_2),...]

4 >>> # is sorted in decreasing order of xscores_i

5 >>> print(\

6 ... ' NetFlows ranking gtch gres gcit gint gind THE ranking')

7

8 >>> for i in range(75):

9 ... x = nfRanking[i]

10 ... xScore = rdg.netFlowsRankingDict[x]['netFlow']

11 ... thexScore,thex = theScores[i]

12 ... print('%2d : %s (%.2f) ' % (i+1,x,xScore), end=' \t')

13 ... for g in rdg.criteria:

14 ... print('%.1f ' % (t.evaluation[g][x]),end=' ')

15 ... print(' %s (%.2f)' % (thex,thexScore))

16

17 NetFlows ranking gtch gres gcit gint gind THE ranking

18 1: ethz (116.95) 89.2 97.3 97.1 93.6 64.1 ethz (92.88)

19 2: calt (116.15) 91.5 96.0 99.8 59.1 85.9 calt (92.42)

20 3: mit (112.72) 87.3 95.4 99.4 73.9 87.5 oxf (92.20)

21 4: oxf (112.00) 94.0 92.0 98.8 93.6 44.3 mit (92.06)

22 5: cmel (101.60) 88.1 92.3 99.4 58.9 71.1 git (89.88)

23 6: git (93.40) 87.2 99.7 91.3 63.0 79.5 cmel (89.43)

24 7: epfl (90.88) 86.3 91.6 94.8 97.2 42.7 icl (89.00)

25 8: icl (90.62) 90.1 87.5 95.1 94.3 49.9 epfl (88.86)

26 9: cou (84.60) 81.6 94.1 99.7 55.7 45.7 tum (87.70)

27 10: tum (80.42) 87.6 95.1 87.9 52.9 95.1 sing (86.86)

28 11: wash (76.28) 84.4 88.7 99.3 57.4 41.2 cou (86.59)

29 12: sing (73.05) 89.9 91.3 83.0 95.3 50.6 ucl (86.05)

30 13: hkst (71.05) 74.3 92.0 96.2 84.4 55.8 wash (85.60)

31 14: ucl (66.78) 85.5 90.3 87.6 94.7 42.4 hkst (85.47)

32 15: uiu (64.80) 85.0 83.1 99.2 51.4 42.2 ntu (85.46)

33 16: unt (62.65) 79.9 84.4 99.6 77.6 38.4 ued (85.03)

34 17: ued (58.67) 85.7 85.3 89.7 95.0 38.8 unt (84.42)

35 18: ntu (57.88) 76.6 87.7 90.4 92.9 86.9 uiu (83.67)

36 19: mcp (54.08) 79.7 89.3 94.6 29.8 51.7 mcp (81.53)

37 20: csd (46.62) 75.2 81.6 99.8 39.7 59.8 cbu (81.25)

38 21: cbu (44.27) 81.2 78.5 94.7 66.9 45.7 tsu (80.91)

39 22: uta (43.27) 72.6 85.3 99.6 31.6 49.7 csd (80.45)

40 23: tsu (42.42) 88.1 90.2 76.7 27.1 85.9 uwa (80.02)

41 24: nyu (35.30) 71.1 77.4 99.4 78.0 39.8 nyu (79.72)

42 25: uwa (28.88) 75.3 82.6 91.3 72.9 41.5 uta (79.61)

43 26: csb (18.18) 65.6 70.9 94.8 72.9 74.9 kit (77.94)

44 27: kit (16.32) 73.8 85.5 84.4 41.3 76.8 bju (77.04)
(continues on next page)

168

(continued from previous page)

45 28: utj (15.95) 92.0 91.7 48.7 25.8 49.6 csb (76.23)

46 29: bju (15.45) 83.0 85.3 70.1 30.7 99.4 rwth (76.06)

47 30: kcl (11.95) 45.5 94.6 86.3 95.1 38.3 hku (75.41)

48 31: chku (9.43) 64.1 69.3 94.7 75.6 49.9 pud (75.17)

49 32: kist (7.30) 79.4 88.2 64.2 31.6 92.8 kist (74.94)

50 33: rwth (5.00) 77.8 85.0 70.8 43.7 89.4 kcl (74.81)

51 34: pud (2.40) 76.9 84.8 70.8 58.1 56.7 chku (74.23)

52 35: epfr (-1.70) 81.7 60.6 78.1 85.3 62.9 epfr (73.71)

53 36: hku (-3.83) 77.0 73.0 77.0 96.8 39.5 dut (73.44)

54 37: rcu (-6.38) 64.1 53.8 99.4 63.7 46.1 tub (73.25)

55 38: cir (-8.20) 68.8 64.6 93.0 65.1 40.4 utj (72.92)

56 39: dut (-8.85) 64.1 78.3 76.3 69.8 90.1 cir (72.50)

57 40: ens (-8.97) 71.8 40.9 98.7 69.6 43.5 ntw (72.00)

58 41: ntw (-11.15) 81.5 79.8 66.6 25.5 67.6 anu (70.57)

59 42: anu (-11.50) 47.2 73.0 92.2 90.0 48.1 rcu (69.79)

60 43: tub (-12.20) 66.2 82.4 71.0 55.4 99.9 mel (69.67)

61 44: mel (-23.98) 56.1 70.2 83.7 83.3 50.4 lms (68.38)

62 45: lms (-25.43) 81.5 68.1 61.0 31.1 87.8 ens (68.35)

63 46: bro (-27.18) 58.5 54.9 96.8 52.3 38.6 wtu (67.86)

64 47: frei (-34.42) 54.2 51.6 89.5 49.7 99.9 tech (67.06)

65 48: wtu (-35.05) 61.8 73.5 73.7 51.9 62.2 bro (66.49)

66 49: tech (-37.95) 54.9 71.0 85.1 51.7 40.1 man (66.33)

67 50: itmo (-38.50) 58.0 32.0 98.7 39.2 68.7 zhej (65.34)

68 51: zhej (-43.70) 73.5 70.4 60.7 22.6 75.7 frei (65.08)

69 52: man (-44.83) 63.5 71.9 62.9 84.1 42.1 unsw (63.65)

70 53: kuj (-47.40) 75.4 72.8 49.5 28.3 51.4 kuj (62.77)

71 54: kul (-49.98) 35.2 55.8 92.0 46.0 88.3 sou (62.15)

72 55: unsw (-54.88) 60.2 58.2 70.5 87.0 44.3 shJi (61.35)

73 56: glas (-56.98) 35.2 52.5 91.2 85.8 39.2 itmo (60.52)

74 57: utw (-59.27) 38.2 52.8 87.0 69.0 60.0 kul (60.47)

75 58: unlu (-60.08) 35.2 44.2 87.4 99.7 54.1 glas (59.78)

76 59: naji (-60.52) 51.4 76.9 48.8 39.7 74.4 utw (59.40)

77 60: sou (-60.83) 48.2 60.7 75.5 87.4 43.2 stut (58.85)

78 61: hkpu (-62.05) 46.8 36.5 91.4 73.2 41.5 naji (58.61)

79 62: qut (-66.17) 45.5 42.6 82.8 75.2 63.0 tud (58.28)

80 63: humb (-68.10) 48.4 31.3 94.7 41.5 45.5 unlu (58.04)

81 64: shJi (-69.72) 66.9 68.3 62.4 22.8 38.5 qut (57.99)

82 65: stut (-69.90) 54.2 60.6 61.1 36.3 97.8 hkpu (57.69)

83 66: tud (-70.83) 46.6 53.6 75.9 53.7 66.5 albt (57.63)

84 67: tlavu (-71.50) 34.1 57.2 89.0 45.3 38.6 mil (57.47)

85 68: cihk (-72.20) 42.4 44.9 80.1 76.2 67.9 hels (57.40)

86 69: albt (-72.33) 39.2 53.3 69.9 91.9 75.4 cihk (57.33)

87 70: indis (-72.53) 56.9 76.1 49.3 20.1 41.5 tlavu (57.19)

88 71: ariz (-75.10) 28.4 61.8 84.3 59.3 42.0 indis (57.04)

89 72: kth (-77.10) 44.8 42.0 83.6 71.6 39.2 ariz (56.79)

90 73: hels (-79.55) 48.8 49.6 80.4 50.6 39.5 kth (56.36)

(continues on next page)

169

(continued from previous page)

91 74: eind (-82.85) 32.4 48.4 81.5 72.2 45.8 humb (55.34)

92 75: mil (-83.67) 46.4 64.3 69.2 44.1 38.5 eind (54.36)

The first inversion we observe in Listing 3.19 (Lines 20-21) concerns Oxford University
and theMIT, switching positions 3 and 4. Most inversions are similarly short and concern
only switching very close positions in either way. There are some slightly more important
inversions concerning, for instance, the Hong Kong University CS Dept, ranked into
position 30 in the THE ranking and here in the position 36 (Line 53). The opposite
situation may also happen; the Berlin Humboldt University CS Dept, occupying the 74th
position in the THE ranking, advances in the NetFlows ranking to position 63 (Line 80).

In our bipolar-valued epistemic framework, the NetFlows score of any CS Dept x (see
Listing 3.19) corresponds to the criteria significance support for the logical statement (x
is first-ranked). Formally

r(x is first-ranked) =
∑︀

𝑦 ̸=𝑥 𝑟
(︀
(𝑥 ≿ 𝑦) + (𝑦 ̸≿ 𝑥)

)︀
=

∑︀
𝑦 ̸=𝑥

(︀
𝑟(𝑥 ≿ 𝑦)−𝑟(𝑦 ≿

𝑥)
)︀

Using the robust outranking characteristics of digraph rdg, we may thus explicitly com-
pute, for instance, ETH Zürich’s score, denoted nfx below.

1 >>> x = 'ethz'

2 >>> nfx = Decimal('0')

3 >>> for y in rdg.actions:

4 ... if x != y:

5 ... nfx += (rdg.relation[x][y] - rdg.relation[y][x])

1 >>> print(x, nfx)

2 ethz 116.950

In Listing 3.19 (Line 18), we may now verify that ETH Zürich obtains indeed the highest
NetFlows score, and gives, hence the most credible first-ranked CS Dept of the 75
potential candidates.

How may we now convince the reader, that our pairwise outranking based ranking result
here appears more objective and trustworthy, than the classic value theory based THE
ranking by overall scores?

How to judge the quality of a ranking result?

In a multiple criteria based ranking problem, inspecting pairwise marginal performance
differences may give objectivity to global preferential statements. That a CS Dept x
convincingly outranks Dept y may thus conveniently be checked. The ETH Zürich CS
Dept is, for instance, first ranked before Caltech’s Dept in both previous rankings. Lest
us check the preferential reasons.

170

Listing 3.20: Comparing pairwise criteria performances

1 >>> rdg.showPairwiseOutrankings('ethz','calt')

2 *------------ pairwise comparisons ----*

3 Valuation in range: -100.00 to +100.00

4 Comparing actions : (ethz, calt)

5 crit. wght. g(x) g(y) diff | ind pref r() |

6 ------------------------------- ------------------------

7 gcit 27.50 97.10 99.80 -2.70 | 2.50 5.00 +0.00 |

8 gind 5.00 64.10 85.90 -21.80 | 2.50 5.00 -5.00 |

9 gint 7.50 93.60 59.10 +34.50 | 2.50 5.00 +7.50 |

10 gres 30.00 97.30 96.00 +1.30 | 2.50 5.00 +30.00 |

11 gtch 30.00 89.20 91.50 -2.30 | 2.50 5.00 +30.00 |

12 r(x >= y): +62.50

13 crit. wght. g(y) g(x) diff | ind pref r() |

14 ------------------------------- ------------------------

15 gcit 27.50 99.80 97.10 +2.70 | 2.50 5.00 +27.50 |

16 gind 5.00 85.90 64.10 +21.80 | 2.50 5.00 +5.00 |

17 gint 7.50 59.10 93.60 -34.50 | 2.50 5.00 -7.50 |

18 gres 30.00 96.00 97.30 -1.30 | 2.50 5.00 +30.00 |

19 gtch 30.00 91.50 89.20 +2.30 | 2.50 5.00 +30.00 |

20 r(y >= x): +85.00

A significant positive performance difference (+34.50), concerning the International out-
look criterion (of 7,5% significance), may be observed in favour of the ETH Zürich Dept
(Line 9 above). Similarly, a significant positive performance difference (+21.80), con-
cerning the Industry income criterion (of 5% significance), may be observed, this time, in
favour of the Caltech Dept. The former, larger positive, performance difference, observed
on a more significant criterion, gives so far a first convincing argument of 12.5% signifi-
cance for putting ETH Zürich first, before Caltech. Yet, the slightly positive performance
difference (+2.70) between Caltech and ETH Zürich on the Citations criterion (of 27.5%
significance) confirms an at least as good as situation in favour of the Caltech Dept.

The inverse negative performance difference (-2.70), however, is neither significant (<
-5.00), nor insignificant (> -2.50), and does hence neither confirm nor infirm a not
at least as good as situation in disfavour of ETH Zürich. We observe here a convincing
argument of 27.5% significance for putting Caltech first, before ETH Zürich.

Notice finally, that, on the Teaching and Research criteria of total significance 60%, both
Depts do, with performance differences < abs(2.50), one as well as the other. As these two
major performance criteria necessarily support together always the highest significance
with the imposed significance weight preorder: gtch = gres > gcit > gint > gind, both
outranking situations get in fact globally confirmed at stability level +2 (see the advanced
topic on stable outrankings with multiple criteria of ordinal significance).

We may well illustrate all such stable outranking situations with a browser view of the
corresponding robust relation map using our NetFlows ranking.

171

>>> rdg.showHTMLRelationMap(tableTitle='Robust Outranking Map',

... rankingRule='NetFlows')

Fig. 3.8: Relation map of the robust outranking relation

In Fig. 3.8, dark green, resp. light green marked positions show certainly, resp.
positively valid outranking situations, whereas dark red, resp. light red marked
positions show certainly, respectively positively valid outranked situations. In the left
upper corner we may verify that the five top-ranked Depts ([‘ethz’, ‘calt’, ‘oxf’, ‘mit’,
‘cmel’]) are indeed mutually outranking each other and thus are to be considered all
indifferent. They are even robust Condorcet winners, i.e positively outranking all other
Depts. We may by the way notice that no certainly valid outranking (dark green) and no
certainly valid outranked situations (dark red) appear below, resp. above the principal
diagonal; none of these are hence violated by our netFlows ranking.

The non reflexive white positions in the relation map, mark outranking or outranked
situations that are not robust with respect to the given significance weight preorder.
They are, hence, put into doubt and set to the indeterminate characteristic value 0.

By measuring the ordinal correlation with the underlying pairwise global and marginal

172

robust outranking situations, the quality of the robust netFlows ranking result may be
formally evaluatedPage 146, 27.

Listing 3.21: Measuring the quality of the NetFlows rank-
ing result

1 >>> corrnf = rdg.computeRankingCorrelation(nfRanking)

2 >>> rdg.showCorrelation(corrnf)

3 Correlation indexes:

4 Crisp ordinal correlation : +0.901

5 Epistemic determination : 0.563

6 Bipolar-valued equivalence : +0.507

In Listing 3.21 (Line 4), we may notice that the NetFlows ranking result is indeed highly
ordinally correlated (+0.901, in Kendall ’s index tau sense) with the pairwise global robust
outranking relation. Their bipolar-valued relational equivalence value (+0.51, Line 6)
indicates a more than 75% criteria significance support.

We may as well check how the netFlows ranking rule is actually balancing the five ranking
criteria.

1 >>> rdg.showRankingConsensusQuality(nfRanking)

2 Criterion (weight): correlation

3 -------------------------------

4 gtch (0.300): +0.660

5 gres (0.300): +0.638

6 gcit (0.275): +0.370

7 gint (0.075): +0.155

8 gind (0.050): +0.101

9 Summary:

10 Weighted mean marginal correlation (a): +0.508

11 Standard deviation (b) : +0.187

12 Ranking fairness (a)-(b) : +0.321

The correlations with the marginal performance criterion rankings are nearly respecting
the given significance weights preorder: gtch ~ gres > gcit > gint > gind (see above Lines
4-8). The mean marginal correlation is quite high (+0.51). Coupled with a low standard
deviation (0.187), we obtain a rather fairly balanced ranking result (Lines 10-12).

We may also inspect the mutual correlation indexes observed between the marginal cri-
terion robust outranking relations.

1 >>> rdg.showCriteriaCorrelationTable()

2 Criteria ordinal correlation index

3 | gcit gind gint gres gtch

4 -----|--

5 gcit | +1.00 -0.11 +0.24 +0.13 +0.17

6 gind | +1.00 -0.18 +0.15 +0.15

7 gint | +1.00 +0.04 -0.00

(continues on next page)

173

(continued from previous page)

8 gres | +1.00 +0.67

9 gtch | +1.00

Slightly contradictory (-0.11) appear the Citations and Industrial income criteria (Line
5 Column 3). Due perhaps to potential confidentiality clauses, it seams not always pos-
sible to publish industrially relevant research results in highly ranked journals. However,
criteria Citations and International outlook show a slightly positive correlation (+0.24,
Column 4), whereas the International outlook criterion shows no apparent correlation
with both the major Teaching and Research criteria. The latter are however highly
correlated (+0.67. Line 9 Column 6).

A Principal Component Analysis may well illustrate the previous findings.

>>> rdg.export3DplotOfCriteriaCorrelation(graphType='png')

Fig. 3.9: 3D PCA plot of the pairwise criteria correlation table

In Fig. 3.9 (factors 1 and 2 plot) we may notice, first, that more than 80% of the total
variance of the previous correlation table is explained by the apparent opposition between

174

the marginal outrankings of criteria: Teaching, Research & Industry income on the left
side, and the marginal outrankings of criteria: Citations & international outlook on the
right side. Notice also in the left lower corner the nearly identical positions of the marginal
outrankings of the major Teaching & Research criteria. In the factors 2 and 3 plot, about
30% of the total variance is captured by the opposition between the marginal outrankings
of the Teaching & Research criteria and the marginal outrankings of the Industrial income
criterion. Finally, in the factors 1 and 3 plot, nearly 15% of the total variance is explained
by the opposition between the marginal outrankings of the International outlook criterion
and the marginal outrankings of the Citations criterion.

It may, finally, be interesting to assess, similarly, the ordinal correlation of the THE
overall scores based ranking with respect to our robust outranking situations.

Listing 3.22: Computing the ordinal quality of the THE
ranking

1 >>> # theScores = [(xScore_1,x_1), (xScore_2,x_2),...]

2 >>> # is sorted in decreasing order of xscores

3 >>> theRanking = [item[1] for item in theScores]

4 >>> corrthe = rdg.computeRankingCorrelation(theRanking)

5 >>> rdg.showCorrelation(corrthe)

6 Correlation indexes:

7 Crisp ordinal correlation : +0.907

8 Epistemic determination : 0.563

9 Bipolar-valued equivalence : +0.511

10 >>> rdg.showRankingConsensusQuality(theRanking)

11 Criterion (weight): correlation

12 -------------------------------

13 gtch (0.300): +0.683

14 gres (0.300): +0.670

15 gcit (0.275): +0.319

16 gint (0.075): +0.161

17 gind (0.050): +0.106

18 Summary:

19 Weighted mean marginal correlation (a): +0.511

20 Standard deviation (b) : +0.210

21 Ranking fairness (a)-(b) : +0.302

The THE ranking result is similarly correlated (+0.907, Line 7) with the pairwise global
robust outranking relation. By its overall weighted scoring rule, the THE ranking induces
marginal criterion correlations that are naturally compatible with the given significance
weight preorder (Lines 13-17). Notice that the mean marginal correlation is of a similar
value (+0.51, Line 19) as the netFlows ranking’s. Yet, its standard deviation is higher,
which leads to a slightly less fair balancing of the three major ranking criteria.

To conclude, let us emphasize, that, without any commensurability hypothesis and by
taking, furthermore, into account, first, the always present more or less imprecision of any
performance grading and, secondly, solely ordinal criteria significance weights, we may
obtain here with our robust outranking approach a very similar ranking result with more
or less a same, when not better, preference modelling quality. A convincing heatmap

175

view of the 25 first-ranked Institutions may be generated in the default system browser
with following command.

1 >>> rdg.showHTMLPerformanceHeatmap(

2 ... WithActionNames=True,

3 ... outrankingModel='this',

4 ... rankingRule='NetFlows',

5 ... ndigits=1,

6 ... Correlations=True,

7 ... fromIndex=0,toIndex=25)

176

Fig. 3.10: Extract of a heatmap browser view on the NetFlows ranking result

As an exercise, the reader is invited to try out other robust outranking based ranking
heuristics. Notice also that we have not challenged in this tutorial the THE provided
criteria significance preorder. It would be very interesting to consider the five ranking
objectives as equally important and, consequently, consider the ranking criteria to be
equisignificant. Curious to see the ranking results under such settings.

Back to Content Table (page 1)

177

3.3 The best students, where do they study? A rating case study

� The performance tableau (page 178)

� Rating-by-ranking with lower-closed quantile limits (page 182)

� Inspecting the bipolar-valued outranking digraph (page 187)

� Rating by quantiles sorting (page 189)

� To conclude (page 192)

In 2004, the German magazine Der Spiegel, with the help of McKinsey & Company and
AOL, conducted an extensive online survey, assessing the apparent quality of German
University students28. More than 80,000 students, by participating, were questioned on
their ‘Abitur’ and university exams’ marks, time of studies and age, grants, awards and
publications, IT proficiency, linguistic skills, practical work experience, foreign mobility
and civil engagement. Each student received in return a quality score through a specific
weighing of the collected data which depended on the subject the student is mainly
studying.29.

The eventually published results by the Spiegel magazine concerned nearly 50,000 stu-
dents, enroled in one of fifteen popular academic subjects, like German Studies, Life
Sciences, Psychology, Law or CS. Publishing only those subject-University combinations,
where at least 18 students had correctly filled in the questionnaire, left 41 German Uni-
versities where, for at least eight out of the fifteen subjects, an average enrolment quality
score could be determinedPage 178, 29.

Based on this published data28, we would like to present and discuss in this tutorial, how
to rate the apparent global enrolment quality of these 41 higher education institutions
with the help of our Digraph3 software ressources.

The performance tableau

Published data of the 2004 Spiegel student survey is stored, for our evaluation purpose
here, in a file named studentenSpiegel04.py of PerformanceTableau format32.

Listing 3.23: The 2004 Spiegel students survey data

1 >>> from perfTabs import PerformanceTableau

2 >>> t = PerformanceTableau('studentenSpiegel04')

3 >>> t

4 *------- PerformanceTableau instance description ------*

5 Instance class : PerformanceTableau

(continues on next page)

28 Ref: Der Spiegel 48/2004 p.181, Url: https://www.spiegel.de/thema/studentenspiegel/ .
29 The methology guiding the Spiegel survey may be consulted in German here . A copy may be

consulted in examples directory of the Digraph3 ressources.
32 The performance tableau studentenSpiegel04.py is also available in the examples directory of

the Digraph3 software collection.

178

_static/studentenSpiegel04.py
https://www.spiegel.de/thema/studentenspiegel/

(continued from previous page)

6 Instance name : studentenSpiegel04

7 # Actions : 41 (Universities)

8 # Criteria : 15 (academic subjects)

9 NA proportion (%) : 27.3

10 Attributes : ['name', 'actions', 'objectives',

11 'criteria', 'weightPreorder',

12 'evaluation']

13 >>> t.showHTMLPerformanceHeatmap(ndigits=1,

14 ... rankingRule=None)

179

Fig. 3.11: Average quality of enroled students per academic subject

In Fig. 3.11, the fifteen popular academic subjects are grouped into topical ‘Faculties ’:

180

- Humanities ; - Law, Economics & Management ; - Life Sciences & Medicine; - Natural
Sciences & Mathematics ; and - Technology. All fifteen subjects are considered equally
significant for our evaluation problem (see Row 2). The recorded average enrolment
quality scores appear coloured along a 7-tiling scheme per subject (see last Row).

We may by the way notice that TU Dresden is the only Institution showing enrolment
quality scores in all the fifteen academic subjects. Whereas, on the one side, TU München
and Kaiserslautern are only valuated in Sciences and Technology subjects. On the other
side, Mannheim, is only valuated in Humanities and Law, Economics & Management
studies. Most of the 41 Universities are not valuated in Engineering studies. We are,
hence, facing a large part (27.3%) of irreducible missing data (see Listing 3.23 Line 9 and
the advanced topic on coping with missing data).

Details of the enrolment quality criteria (the academic subjects) may be consulted in a
browser view (see Fig. 3.12 below).

>>> t.showHTMLCriteria()

Fig. 3.12: Details of the rating criteria

The evaluation of the individual quality score for a participating student actually depends
on his or her mainly enroled subject29. The apparent quality measurement scales thus
largely differ indeed from subject to subject (see Fig. 3.12), like Law Studies (35.0 - 65-0)
and Politology (50.0 - 70.0). The recorded average enrolment quality scores, hence, are
in fact incommensurable between the subjects.

To take furthermore into account a potential and very likely imprecision of the individual
quality scores’ computation, we shall assume that, for all subjects, an average enrolment
quality score difference of 0.1 is insignificant, wheras a difference of 0.5 is sufficient to
positively attest a better enrolment quality.

The apparent incommensurability and very likely imprecision of the recorded average
enrolment quality scores, rendersmeaningless any global averaging over the subjects per
University of the enrolment quality. We shall therefore, similarly to the methodological
approach of the Spiegel authorsPage 178, 29, proceed with an order statistics based rating-
by-ranking approach (see tutorial on rating with learned quantile norms (page 108)).

181

Rating-by-ranking with lower-closed quantile limits

The Spiegel authors opted indeed for a simple 3-tiling of the Universities per valuated aca-
demic subject, followed by an average Borda scores based global rankingPage 178, 29. Here,
our epistemic logic based outranking approach, allows us, with adequate choices
of indifference (0.1) and preference (0.5) discrimination thresholds, to estimate lower-
closed 9-tiles of the enrolment quality scores per subject and rank conjointly, with the
help of the Copeland ranking rule34 applied to a corresponding bipolar-valued outranking
digraph, the 41 Universities and the lower limits of the estimated 9-tiles limits.

We need therefore to, first, estimate, with the help of the PerformanceQuantiles con-
structor, the lowerclosed 9-tiling of the average enrolment quality scores per academic
subject.

Listing 3.24: Computing 9-tiles of the enrolment quality
scores per subject

1 >>> from performanceQuantiles import PerformanceQuantiles

2 >>> pq = PerformanceQuantiles(t,numberOfBins=9,LowerClosed=True)

3 >>> pq

4 *------- PerformanceQuantiles instance description ------*

5 Instance class : PerformanceQuantiles

6 Instance name : 9-tiled_performances

7 # Criteria : 15

8 # Quantiles : 9 (LowerClosed)

9 # History sizes : {'germ': 39, 'pol': 34, 'psy': 34, 'soc': 32,

10 'law': 32, 'eco': 21, 'mgt': 34,

11 'bio': 34, 'med': 28,

12 'phys': 37, 'chem': 35, 'math': 27,

13 'info': 33, 'elec': 14, 'mec': 13, }

The history sizes, reported in Listing 3.24 above, indicate the number of Universities
valuated in each one of the popular fifteen subjects. German Studies, for instance, are
valuated for 39 out of 41 Universities, whereas Electrical and Mechanical Engineering
are only valuated for 14, respectively 13 Institutions. None of the fifteen subjects are
valuated in all the 41 Universities30.

We may inspect the resulting 9-tiling limits in a browser view.

>>> pq.showHTMLLimitingQuantiles(Transposed=True,Sorted=False,

... ndigits=1,title='9-tiled quality score limits')

34 See the tutorial on ranking with incommensurable performance criteria (page 72).
30 It would have been much more accurate to estimate such quantile limits from the individual qualitiy

scores of all the nearly 50,000 surveyed students. But this data was not public.

182

Fig. 3.13: 9-tiling quality score limits per academic subject

In Fig. 3.13, we see confirmed again the incommensurability between the subjects, we
noticed already in the apparent enrolment quality scoring , especially between Law Studies
(39.1 - 51.1) and Politology (50.5 - 65.9). Universities valuated in Law studies but not
in Politology, like the University of Bielefeld, would see their enrolment quality unfairly
weakened when simply averaging the enrolment quality scores over valuated subjects.

We add, now, these 9-tiling quality score limits to the enrolment quality records of
the 41 Universities and rank all these records conjointly together with the help of the
LearnedQuantilesRatingDigraph constructor and by using the Copeland ranking rule
(page 75).

>>> from sortingDigraphs import LearnedQuantilesRatingDigraph

>>> lqr = LearnedQuantilesRatingDigraph(pq,t,

... rankingRule='Copeland')

The resulting ranking of the 41 Universities including the lower-closed 9-tiling score limits
may be nicely illustrated with the help of a corresponding heatmap view (see Fig. 3.14).

>>> lqr.showHTMLRatingHeatmap(colorLevels=7,Correlations=True,

... ndigits=1,rankingRule='Copeland')

183

Fig. 3.14: Heatmap view of the 9-tiles rating-by-ranking result184

The ordinal correlation (+0.967)35 of the Copeland ranking with the underlying bipolar-
valued outranking digraph is very high (see Fig. 3.14 Row 1). Most correlated sub-
jects with this rating-by-ranking result appear to be German Studies (+0.51), Chemistry
(+0.48), Management (+0.47) and Physics (+0.46). Both Electrical (+0.07) and Me-
chanical Engineering (+0.05) are the less correlated subjects (see Row 3).

From the actual ranking position of the lower 9-tiling limits, we may now immediately
deduce the 9-tile enrolment quality equivalence classes. No University reaches the highest
9-tile ([0.89− [). In the lowest 9-tile ([0.00− 0.11]) we find the University Duisburg. The
complete rating result may be easily printed out as follows.

Listing 3.25: Rating the Universities into enrolment qual-
ity 9-tiles

1 >>> lqr.showQuantilesRating()

2 *-------- Quantiles rating result ---------

3 [0.89 - 1.00] []

4 [0.78 - 0.89[['tum', 'frei', 'kons', 'leip', 'mu', 'hei']

5 [0.67 - 0.78[['stu', 'berh']

6 [0.56 - 0.67[['aug', 'mnh', 'tueb', 'mnst', 'jena',

7 'reg', 'saar']

8 [0.44 - 0.56[['wrzb', 'dres', 'ksl', 'marb', 'berf',

9 'chem', 'koel', 'erl', 'tri']

10 [0.33 - 0.44[['goet', 'main', 'bon', 'brem']

11 [0.22 - 0.33[['fran', 'ham', 'kiel', 'aach',

12 'bertu', 'brau', 'darm']

13 [0.11 - 0.22[['gie', 'dsd', 'bie', 'boc', 'han']

14 [0.00 - 0.11[['duis']

Following Universities: TU München, Freiburg, Konstanz, Leipzig, München as well as
Heidelberg, appear best rated in the eigth 9-tile ([0.78 − 0.89[, see Listing 3.25 Line 4).
Lowest-rated in the first 9-tile, as mentioned before, appears University Duisburg (Line
14). Midfield, the fifth 9-tile ([0.44 − 0.56[), consists of the Universities Würzburg, TU
Dresden, Kaiserslautern, Marburg, FU Berlin, Chemnitz, Köln , Erlangen-Nürnberg and
Trier (Lines 8-9).

A corresponding graphviz drawing may well illustrate all these enrolment quality equiv-
alence classes.

>>> lqr.exportRatingByRankingGraphViz(fileName='ratingResult',

... graphSize='12,12')

---- exporting a dot file for GraphViz tools ---------

Exporting to ratingResult.dot

dot -Grankdir=TB -Tpdf dot -o ratingResult.png

35 See the advanced topic on the ordinal correlation of bipolar-valued digraphs.

185

Fig. 3.15: Drawing of the 9-tiles rating-by-ranking result186

We have noticed in the tutorial on ranking with multiple criteria (page 72), that there is
not a single optimal rule for ranking from a given outranking digraph. The Copeland rule,
for instance, has the advantage of being Condorcet consistent, i.e. when the outranking
digraph models in fact a linear ranking, this ranking will necessarily be the result of the
Copeland rule. When this is not the case, and especially when the outranking digraph
shows many circuits, all potential ranking rules may give very divergent ranking results,
and hence also substantially divergent rating-by-ranking results.

How confident, hence, is our precise Copeland rating-by-ranking result? To investigate
this question, let us now inspect the outranking digraph on which we actually apply
the Copeland ranking rule.

Inspecting the bipolar-valued outranking digraph

We say that University x outranks (resp. is outranked by) University y in enrolment
quality when there exists a majority (resp. only a minority) of valuated subjects
showing an at least as good as average enrolment quality score.

To compute these outranking situations, we use the BipolarOutrankingDigraph con-
structor.

Listing 3.26: Inspecting the bipolar-valued outranking
digraph

1 >>> from outrankingDigraphs import BipolarOutrankingDigraph

2 >>> dg = BipolarOutrankingDigraph(t)

3 >>> dg

4 *------- Object instance description ------*

5 Instance class : BipolarOutrankingDigraph

6 Instance name : rel_studentenSpiegel04

7 # Actions : 41 (Universities)

8 # Criteria : 15 (subjects)

9 Size : 828 (outranking situations)

10 Determinateness (%) : 63.67

11 Valuation domain : [-1.00;1.00]

12 >>> dg.computeTransitivityDegree(Comments=True)

13 Transitivity degree of digraph <rel_studentenSpiegel04>:

14 #triples x>y>z: 57837, #closed: 30714, #open: 27123

15 (#closed/#triples) = 0.531

16 >>> dg.computeSymmetryDegree(Comments=True)

17 Symmetry degree of digraph <rel_studentenSpiegel04>:

18 #arcs x>y: 793, #symmetric: 35, #asymmetric: 758

19 #symmetric/#arcs = 0.044

The bipolar-valued outranking digraph dg (see Listing 3.23 Line 2), obtained with the
given performance tableau t, shows 828 positively validated pairwise outranking situations
(Line 9). Unfortunately, the transitivity of digraph dg is far from being satisfied: nearly
half of the transitive closure is missing (Line 15). Despite the rather large preference
discrimination threshold (0.5) we have assumed (see Fig. 3.12), there does not occur

187

many indifference situations (Line 19).

We may furthermore check if there exists any cyclic outranking situations.

Listing 3.27: Enumerating chordless outranking circuits

1 >>> dg.computeChordlessCircuits()

2 >>> dg.showChordlessCircuits()

3 *---- Chordless circuits ----*

4 93 circuits.

5 1: ['aach', 'bie', 'darm', 'brau'] , credibility : 0.067

6 2: ['aach', 'bertu', 'brau'] , credibility : 0.200

7 3: ['aach', 'bertu', 'brem'] , credibility : 0.067

8 4: ['aach', 'bertu', 'ham'] , credibility : 0.200

9 5: ['aug', 'tri', 'marb'] , credibility : 0.067

10 6: ['aug', 'jena', 'marb'] , credibility : 0.067

11 7: ['aug', 'jena', 'koel'] , credibility : 0.067

12 ...

13 ...

14 29: ['berh', 'kons', 'mu'] , credibility : 0.133

15 ...

16 ...

17 88: ['main', 'mnh', 'marb'] , credibility : 0.067

18 89: ['marb', 'saar', 'wrzb'] , credibility : 0.067

19 90: ['marb', 'saar', 'reg'] , credibility : 0.067

20 91: ['marb', 'saar', 'mnst'] , credibility : 0.133

21 92: ['marb', 'saar', 'tri'] , credibility : 0.067

22 93: ['mnh', 'mu', 'stu'] , credibility : 0.133

Here we observe indeed 93 such outranking circuits, like: Berlin Humboldt > Konstanz
> München > Berlin Humboldt supported by a (0.133 + 1.0)/2 = 56.7% majority of
subjects31 (see Listing 3.27 circuit 29 above). In the Copeland ranking result shown
in Fig. 3.14, these Universities appear positioned respectively at ranks 10, 4 and 6. In
the NetFlows ranking result they would appear respectively at ranks 10, 6 and 5, thus
inverting the positions of Konstanz and München. The occurrence in digraph dg of so
many outranking circuits makes thus doubtful any forced linear ranking, independently
of the specific ranking rule we might have applied.

To effectively check the quality of our Copeland rating-by-ranking result, we shall now
compute a direct sorting into 9-tiles of the enrolment quality scores, without using any
outranking digraph based ranking rule.

31 Converted by a +1.0 shift and a 0.5 * 100 scale transform from a bipolar-valued credibility of +0.07
in [-1.0, +1.0] to a majority (in %) support.

188

Rating by quantiles sorting

In our case here, the Universities represent the decision actions: where to study. We
say now that University x is sorted into the lower-closed 9-tile q when the performance
record of x positively outranks the lower limit record of 9-tile q and x does not
positively outrank the upper limit record of 9-tile q.

Listing 3.28: Lower-closed 9-tiles sorting of the 41 Uni-
versities

1 >>> lqr.showActionsSortingResult()

2 Quantiles sorting result per decision action

3 [0.33 - 0.44[: aach with credibility: 0.13 = min(0.13,0.27)

4 [0.56 - 0.89[: aug with credibility: 0.13 = min(0.13,0.27)

5 [0.44 - 0.67[: berf with credibility: 0.13 = min(0.13,0.20)

6 [0.78 - 0.89[: berh with credibility: 0.13 = min(0.13,0.33)

7 [0.22 - 0.44[: bertu with credibility: 0.20 = min(0.33,0.20)

8 [0.11 - 0.22[: bie with credibility: 0.20 = min(0.33,0.20)

9 [0.22 - 0.33[: boc with credibility: 0.07 = min(0.07,0.07)

10 [0.44 - 0.56[: bon with credibility: 0.13 = min(0.20,0.13)

11 [0.33 - 0.44[: brau with credibility: 0.07 = min(0.07,0.27)

12 [0.33 - 0.44[: brem with credibility: 0.07 = min(0.07,0.07)

13 [0.44 - 0.56[: chem with credibility: 0.07 = min(0.13,0.07)

14 [0.22 - 0.56[: darm with credibility: 0.13 = min(0.13,0.13)

15 [0.56 - 0.67[: dres with credibility: 0.27 = min(0.27,0.47)

16 [0.22 - 0.33[: dsd with credibility: 0.07 = min(0.07,0.07)

17 [0.00 - 0.11[: duis with credibility: 0.33 = min(0.73,0.33)

18 [0.44 - 0.56[: erl with credibility: 0.13 = min(0.27,0.13)

19 [0.22 - 0.44[: fran with credibility: 0.13 = min(0.13,0.33)

20 [0.78 - <[: frei with credibility: 0.53 = min(0.53,1.00)

21 [0.22 - 0.33[: gie with credibility: 0.13 = min(0.13,0.20)

22 [0.33 - 0.44[: goet with credibility: 0.07 = min(0.47,0.07)

23 [0.22 - 0.33[: ham with credibility: 0.07 = min(0.33,0.07)

24 [0.11 - 0.22[: han with credibility: 0.20 = min(0.33,0.20)

25 [0.78 - 0.89[: hei with credibility: 0.13 = min(0.13,0.27)

26 [0.56 - 0.67[: jena with credibility: 0.07 = min(0.13,0.07)

27 [0.33 - 0.44[: kiel with credibility: 0.20 = min(0.20,0.47)

28 [0.44 - 0.56[: koel with credibility: 0.07 = min(0.27,0.07)

29 [0.78 - <[: kons with credibility: 0.20 = min(0.20,1.00)

30 [0.56 - 0.89[: ksl with credibility: 0.13 = min(0.13,0.40)

31 [0.78 - 0.89[: leip with credibility: 0.07 = min(0.20,0.07)

32 [0.44 - 0.56[: main with credibility: 0.07 = min(0.07,0.13)

33 [0.56 - 0.67[: marb with credibility: 0.07 = min(0.07,0.07)

34 [0.56 - 0.89[: mnh with credibility: 0.20 = min(0.20,0.27)

35 [0.56 - 0.67[: mnst with credibility: 0.07 = min(0.20,0.07)

36 [0.78 - 0.89[: mu with credibility: 0.13 = min(0.13,0.47)

37 [0.56 - 0.67[: reg with credibility: 0.20 = min(0.20,0.27)

38 [0.56 - 0.78[: saar with credibility: 0.13 = min(0.13,0.20)
(continues on next page)

189

(continued from previous page)

39 [0.78 - 0.89[: stu with credibility: 0.07 = min(0.13,0.07)

40 [0.44 - 0.56[: tri with credibility: 0.07 = min(0.13,0.07)

41 [0.67 - 0.78[: tueb with credibility: 0.13 = min(0.13,0.20)

42 [0.89 - <[: tum with credibility: 0.13 = min(0.13,1.00)

43 [0.56 - 0.67[: wrzb with credibility: 0.07 = min(0.20,0.07)

In the 9-tiles sorting result, shown in Listing 3.28, we notice for instance in Lines 3-4
that the RWTH Aachen is precisely rated into the 4th 9-tile ([0.33 − 0.44[), whereas
the University Augsburg is less precisely rated conjointly into the 6th, the 7th and the
8th 9-tile ([0.56 − 0.89[). In Line 42, TU München appears best rated into the unique
highest 9-tile ([0.89− < [). All three rating results are supported by a (0.07 + 1.0)/2
= 53.5% majority of valuated subjectsPage 188, 31. With the support of a 76.5% majority
of valuated subjects (Line 20), the apparent most confident rating result is the one of
University Freiburg (see also Fig. 3.11 and Fig. 3.14).

We shall now lexicographically sort these individual rating results per University, by
average rated 9-tile limits and highest-rated upper 9-tile limit, into ordered, but not
necessarily disjoint, enrolment quality quantiles.

>>> lqr.showHTMLQuantilesSorting(strategy='average')

Fig. 3.16: The ranked 9-tiles rating-by-sorting result

In Fig. 3.16 we may notice that the Universities: Augsburg, Kaiserslautern, Mannheim
and Tübingen for instance, show in fact the same average rated 9-tiles score of 0.725;
yet, the rated upper 9-tile limit of Tuebingen is only 0.78, whereas the one of the other
Universities reaches 0.89. Hence, Tuebingen is ranked below Augsburg, Kaiserslautern
and Mannheim .

190

With a special graphviz drawing of the LearnedQuantilesRatingDigraph instance lqr,
we may, without requiring any specific ordering strategy, as well illustrate our 9-tiles
rating-by-sorting result.

>>> lqr.exportRatingBySortingGraphViz(\

... 'nineTilingDrawing',graphSize='12,12')

---- exporting a dot file for GraphViz tools ---------

Exporting to nineTilingDrawing.dot

dot -Grankdir=TB -Tpng nineTilingDrawing.dot -o nineTilingDrawing.png

Fig. 3.17: Graphviz drawing of the 9-tiles sorting digraph

In Fig. 3.17 we actually see the skeleton (transitive closure removed) of a partial order,
where an oriented arc is drawn between Universities x and y when their 9-tiles sorting
results are disjoint and the one of x is higher rated than the one of y. The rating
for TU München (see Listing 3.28 Lines 45), for instance, is disjoint and higher rated

191

than the one of the Universities Freiburg and Konstanz (Lines 23, 32). And, both the
ratings of Feiburg and Konstanz are, however, not disjoint from the one, for instance, of
the Universty of Stuttgart (Line 42).

The partial ranking, shown in Fig. 3.17, is in fact independent of any ordering strategy:
- average, - optimistic or - pessimistic, of overlapping 9-tiles sorting results, and con-
firms that the same Universities as with the previous rating-by-ranking approach, namely
TU München, Freiburg, Konstanz, Stuttgart, Berlin Humboldt, Heidelberg and Leipzig
appear top-rated. Similarly, the Universities of Duisburg, Bielefeld, Hanover, Bochum,
Giessen, Düsseldorf and Hamburg give the lowest-rated group. The midfield here is
again consisting of more or less the same Universities as the one observed in the previous
rating-by-ranking approach (see Fig. 3.15).

To conclude

In the end, both the Copeland rating-by-ranking, as well as the rating-by-sorting approach
give luckily, in our case study here, very similar results. The first approach, with its
forced linear ranking, determines on the one hand, precise enrolment quality equivalence
classes; a result, depending potentially a lot on the actually applied ranking rule. The
rating-by-sorting approach, on the other hand, only determines for each University a
less precise but prudent rating of its individual enrolment quality, furthermore supported
by a known majority of performance criteria significance; a somehow fairer and robuster
result, but, much less evident for easily comparing the apparent enrolment quality among
Universities. Contradictorily, or sparsely valuated Universities, for instance, will appear
trivially rated into a large midfield of adjacent 9-tiles.

Let us conclude by saying that we prefer this latter rating-by-sorting approach; perhaps
impreciser, due the case given, to missing and contradictory performance data; yet, well
grounded in a powerful bipolar-valued logical and espistemic framework (see the advanced
topics of the Digraph3 documentation).

Back to Content Table (page 1)

3.4 Exercises

We propose hereafter some decision problems which may serve as exercises and exam
questions in an Algorithmic Decision Theory Course. They cover selection, ranking and
rating decision problems. The exercises are marked as follows: § (warming up), §§ (home
work), §§§ (research work).

Solutions should be supported both by computational Python code using the Digraph3
programming resources as well as by methodological and algorithmic arguments from the
Algorithmic Decision Theory Lectures.

192

adtLectures.html

Who will receive the best student award? (§)

Data

Below in Table 3.3 you see the actual grades obtained by four students : Ariana (A),
Bruce (B), Clare (C) and Daniel (D) in five courses: C1, C2, C3, C4 and C5 weighted
by their respective ECTS points.

Table 3.3: Grades obtained by the students

Course C1 C2 C3 C4 C5
ECTS 2 3 4 2 4

Ariana (A) 11 13 9 15 11
Bruce (B) 12 9 13 10 13
Clare (C) 8 11 14 12 14
Daniel (D) 15 10 12 8 13

The grades shown in Table 3.3 are given on an ordinal performance scale from 0 pts
(weakest) to 20 pts (highest). Assume that the grading admits a preference threshold of
1 points. No considerable performance differences are given. The more ECTS points,
the more importance a course takes in the curriculum of the students. An award is to be
granted to the best amongst these four students.

Questions

1. Edit a PerformanceTableau (page 47) instance with the data shown above.

2. Who would you nominate ?

3. Explain and motivate your selection algorithm.

4. Assume that the grading may actually admit an indifference threshold of 1 point
and a preference threshold of 2 points. How stable is your result with respect to
the actual preference discrimination power of the grading scale?

How to fairly rank movies (§)

Data

� File graffiti03.py contains a performance tableau about the rating of movies to be
seen in the city of Luxembourg, February 2003. Its content is shown in Fig. 3.18
below.

1 >>> from perfTabs import PerformanceTableau

2 >>> t = PerformanceTableau('graffiti03')

3 >>> t.showHTMLPerformanceHeatmap(WithActionNames=True,

4 ... pageTitle='Graffiti Star wars',

5 ... rankingRule=None,colorLevels=5,

6 ... ndigits=0)

193

_static/graffiti03.py

Fig. 3.18: Graffiti magazine’s movie ratings from February 2003

The critic’s opinions are expressed on a 7-graded scale: -2 (two zeros, I hate), -1 (one
zero, I don’t like), 1 (one star, maybe), 2 (two stars, good), 3 (three stars, excellent),
4 (four stars, not to be missed), and 5 (five stares, a master piece). Notice the many
missing data (NA) when a critic had not seen the respective movie. Mind also that the
ratings of two movie critics (jh and vt) are given a higher significance weight.

Questions

1. The Graffiti magazine suggest a best rated movie with the help of an average number
of stars, ignoring the missing data and any significance weights of the critics. By
taking into account missing data and varying significance weights, how may one
find the best rated movie without computing any average rating scores ?

2. How would one rank these movies so as to at best respect the weighted rating
opinions of each movie critic ?

3. In what ranking position would appear a movie not seen by any movie critic ?
Confirm computationally the answer by adding such a fictive, not at all evaluated,
movie to the given performance tableau instance.

4. How robust are the preceeding results when the significance weights of the movie
critics are considered to be only ordinal grades ?

194

What is your best choice recommendation? (§)

Data46

A person, who wants to by a TV set, retains after a first selection, eight potential TV
models. To make up her choice these eight models were evaluated with respect to three
decision objectives of equal importance: - Costs of the set (to be minimized); - Picture
and Sound quality of the TV (to be maximized): - Maintenace contract quality of
the provider (to be maximized).

The Costs objective is assessed by the price of the TV set (criterion Pr to be minimized).
Picture quality (criterion Pq), Sound quality (criterion Sq) and Maintenace contract
quality (criterion Mq) are each assessed on a four-level qualitative performance scale: -1
(not good), 0 (average), 1 (good) and 2 (very good).

The actual evaluation data are gathered in Table 3.4 below.

Table 3.4: Performance evaluations of the potential TV
sets

Criteria Pr (¿) Pq Sq Mq
Significance 2 1 1 2

Model T1 -1300 2 2 0
Model T2 -1200 2 2 1
Model T3 -1150 2 1 1
Model T4 -1000 1 1 -1
Model T5 -950 1 1 0
Model T6 -950 0 1 -1
Model T7 -900 1 0 -1
Model T8 -900 0 0 0

The Price criterion Pr supports furthermore an indifference threshold of 25.00 ¿ and a
preference threshold of 75.00 ¿. No considerable performance differences (veto thresh-
olds) are to be considered.

Questions

1. Edit a PerformanceTableau (page 47) instance with the data shown above and
illustrate its content by best showing objectives, criteria, decision alternatives and
performance table. If needed, write adequate python code.

2. What is the best TV set to recommend?

3. Illustrate your best choice recommendation with an adequate graphviz drawing.

4. Explain and motivate your selection algorithm.

5. Assume that the qualitative criteria: Picture quality (Pq), Sound quality (Sq), and
Maintenace contract quality (Mq), are all three considered to be equi-significant and
that the significance of the Price criterion (Pr) equals the significance of these three

46 The data is taken from Ph. Vincke, Multicriteria Decision-Aid, John Wiley & Sons Ltd, Chichester
UK 1992, p.33-35.

195

quality criteria taken together. How stable is your best choice recommendation with
respect to changing these criteria significance weights?

What is the best public policy? (§§)

Data files

� File perfTab_1.py contains a 3 Objectives performance tableau (page 39) with 100
performance records concerning public policies evaluated with respect to an eco-
nomic, a societal and an environmental public decision objective.

� File historicalData_1.py contains a performance tableau of the same kind with 2000
historical performance records.

Questions

1. Illustrate the content of the given perfTab_1.py performance tableau by best show-
ing objectives, criteria, decision alternatives and performance table. If needed, write
adequate python code.

2. Construct the corresponding bipolar-valued outranking digraph. How confident
and/or robust are the apparent outranking situations?

3. What are apparently the 5 best-ranked decision alternatives in your decision prob-
lem from the different decision objectives point of views and from a global fair
compromise view? Justify your ranking approach from a methodological point of
view.

4. How would you rate your 100 public policies into relative deciles classes ?

5. Using the given historical records in historicalData_1.py, how would you rate your
100 public policies into absolute deciles classes ? Explain the differencea you may
observe between the absolute and the previous relative rating result.

6. Select among your 100 potential policies a shortlist of up to 15 potential first policies,
all reaching an absolute performance quantile of at least 66.67%.

7. Based on the previous best policies shortlist (see Question 6), what is your eventual
best-choice recommendation? Is it perhaps an unopposed best choice by all three
objectives?

A fair diploma validation decision (§§§)

Data

Use the RandomAcademicPerformanceTableau constructor from the Digraph3 Python
resources for generating realistic random students performance tableaux concerning a
curriculum of nine ECTS weighted Courses. Assume that all the gradings are done on an
integer scale from 0 (weakest) to 20 (best). It is known that all grading procedures are
inevitably imprecise; therefore we will assume an indifference threshold of 1 point and
a preference theshold of 2 points. Thurthermore, a performance difference of more than

196

_static/perfTab_1.py
_static/historicalData_1.py

12 points is considerable and will trigger a veto situation. To validate eventually their
curriculum, the students are required to obtain more or less 10 points in each course.

Questions

1. Design and implement a fair diploma validation decision rule based on the grades
obtained in the nine Courses.

2. Run simulation tests with random students performance tableaux for validating
your design and implementation.

Back to Content Table (page 1)

4 Moving on to undirected graphs

4.1 Working with the graphs module

� Structure of a Graph object (page 197)

� q-coloring of a graph (page 200)

� MIS and clique enumeration (page 202)

� Line graphs and maximal matchings (page 203)

� Grids and the Ising model (page 206)

� Simulating Metropolis random walks (page 207)

Structure of a Graph object

In the graphs module, the root Graph class provides a generic simple graph model,
without loops and multiple links. A given object of this class consists in:

1. the graph vertices : a dictionary of vertices with ‘name’ and ‘shortName’ at-
tributes,

2. the graph valuationDomain , a dictionary with three entries: the minimum (-
1, means certainly no link), the median (0, means missing information) and the
maximum characteristic value (+1, means certainly a link),

3. the graph edges : a dictionary with frozensets of pairs of vertices as entries carrying
a characteristic value in the range of the previous valuation domain,

4. and its associated gamma function : a dictionary containing the direct neighbors
of each vertex, automatically added by the object constructor.

See the technical documentation of the graphs module.

Example Python3 session

197

1 >>> from graphs import Graph

2 >>> g = Graph(numberOfVertices=7,edgeProbability=0.5)

3 >>> g.save(fileName='tutorialGraph')

The saved Graph instance named ‘tutorialGraph.py’ is encoded in python3 as follows.

1 # Graph instance saved in Python format

2 vertices = {

3 'v1': {'shortName': 'v1', 'name': 'random vertex'},

4 'v2': {'shortName': 'v2', 'name': 'random vertex'},

5 'v3': {'shortName': 'v3', 'name': 'random vertex'},

6 'v4': {'shortName': 'v4', 'name': 'random vertex'},

7 'v5': {'shortName': 'v5', 'name': 'random vertex'},

8 'v6': {'shortName': 'v6', 'name': 'random vertex'},

9 'v7': {'shortName': 'v7', 'name': 'random vertex'},

10 }

11 valuationDomain = {'min':-1,'med':0,'max':1}

12 edges = {

13 frozenset(['v1','v2']) : -1,

14 frozenset(['v1','v3']) : -1,

15 frozenset(['v1','v4']) : -1,

16 frozenset(['v1','v5']) : 1,

17 frozenset(['v1','v6']) : -1,

18 frozenset(['v1','v7']) : -1,

19 frozenset(['v2','v3']) : 1,

20 frozenset(['v2','v4']) : 1,

21 frozenset(['v2','v5']) : -1,

22 frozenset(['v2','v6']) : 1,

23 frozenset(['v2','v7']) : -1,

24 frozenset(['v3','v4']) : -1,

25 frozenset(['v3','v5']) : -1,

26 frozenset(['v3','v6']) : -1,

27 frozenset(['v3','v7']) : -1,

28 frozenset(['v4','v5']) : 1,

29 frozenset(['v4','v6']) : -1,

30 frozenset(['v4','v7']) : 1,

31 frozenset(['v5','v6']) : 1,

32 frozenset(['v5','v7']) : -1,

33 frozenset(['v6','v7']) : -1,

34 }

The stored graph can be recalled and plotted with the generic exportGraphViz()Page 7, 1

method as follows.

1 >>> g = Graph('tutorialGraph')

2 >>> g.exportGraphViz()

3 *---- exporting a dot file for GraphViz tools ---------*

(continues on next page)

198

(continued from previous page)

4 Exporting to tutorialGraph.dot

5 fdp -Tpng tutorialGraph.dot -o tutorialGraph.png

Fig. 4.1: Tutorial graph instance

Properties, like the gamma function and vertex degrees and neighbourhood depths may
be shown with a graphs.Graph.showShort() method.

1 >>> g.showShort()

2 *---- short description of the graph ----*

3 Name : 'tutorialGraph'

4 Vertices : ['v1', 'v2', 'v3', 'v4', 'v5', 'v6', 'v7']

5 Valuation domain : {'min': -1, 'med': 0, 'max': 1}

6 Gamma function :

7 v1 -> ['v5']

8 v2 -> ['v6', 'v4', 'v3']

9 v3 -> ['v2']

10 v4 -> ['v5', 'v2', 'v7']

11 v5 -> ['v1', 'v6', 'v4']

12 v6 -> ['v2', 'v5']

13 v7 -> ['v4']

14 degrees : [0, 1, 2, 3, 4, 5, 6]

15 distribution : [0, 3, 1, 3, 0, 0, 0]

16 nbh depths : [0, 1, 2, 3, 4, 5, 6, 'inf.']

17 distribution : [0, 0, 1, 4, 2, 0, 0, 0]

A Graph instance corresponds bijectively to a symmetric Digraph instance and we may
easily convert from one to the other with the graph2Digraph(), and vice versa with
the digraph2Graph() method. Thus, all resources of the Digraph class, suitable for
symmetric digraphs, become readily available, and vice versa.

199

1 >>> dg = g.graph2Digraph()

2 >>> dg.showRelationTable(ndigits=0,ReflexiveTerms=False)

3 * ---- Relation Table -----

4 S | 'v1' 'v2' 'v3' 'v4' 'v5' 'v6' 'v7'

5 -----|--

6 'v1' | - -1 -1 -1 1 -1 -1

7 'v2' | -1 - 1 1 -1 1 -1

8 'v3' | -1 1 - -1 -1 -1 -1

9 'v4' | -1 1 -1 - 1 -1 1

10 'v5' | 1 -1 -1 1 - 1 -1

11 'v6' | -1 1 -1 -1 1 - -1

12 'v7' | -1 -1 -1 1 -1 -1 -

13 >>> g1 = dg.digraph2Graph()

14 >>> g1.showShort()

15 *---- short description of the graph ----*

16 Name : 'tutorialGraph'

17 Vertices : ['v1', 'v2', 'v3', 'v4', 'v5', 'v6', 'v7']

18 Valuation domain : {'med': 0, 'min': -1, 'max': 1}

19 Gamma function :

20 v1 -> ['v5']

21 v2 -> ['v3', 'v6', 'v4']

22 v3 -> ['v2']

23 v4 -> ['v5', 'v7', 'v2']

24 v5 -> ['v6', 'v1', 'v4']

25 v6 -> ['v5', 'v2']

26 v7 -> ['v4']

27 degrees : [0, 1, 2, 3, 4, 5, 6]

28 distribution : [0, 3, 1, 3, 0, 0, 0]

29 nbh depths : [0, 1, 2, 3, 4, 5, 6, 'inf.']

30 distribution : [0, 0, 1, 4, 2, 0, 0, 0]

q-coloring of a graph

A 3-coloring of the tutorial graph g may for instance be computed and plotted with the
Q_Coloring class as follows.

1 >>> from graphs import Q_Coloring

2 >>> qc = Q_Coloring(g)

3 Running a Gibbs Sampler for 42 step !

4 The q-coloring with 3 colors is feasible !!

5 >>> qc.showConfiguration()

6 v5 lightblue

7 v3 gold

8 v7 gold

9 v2 lightblue

10 v4 lightcoral

(continues on next page)

200

(continued from previous page)

11 v1 gold

12 v6 lightcoral

13 >>> qc.exportGraphViz('tutorial-3-coloring')

14 *---- exporting a dot file for GraphViz tools ---------*

15 Exporting to tutorial-3-coloring.dot

16 fdp -Tpng tutorial-3-coloring.dot -o tutorial-3-coloring.png

Fig. 4.2: 3-Coloring of the tutorial graph

Actually, with the given tutorial graph instance, a 2-coloring is already feasible.

1 >>> qc = Q_Coloring(g,colors=['gold','coral'])

2 Running a Gibbs Sampler for 42 step !

3 The q-coloring with 2 colors is feasible !!

4 >>> qc.showConfiguration()

5 v5 gold

6 v3 coral

7 v7 gold

8 v2 gold

9 v4 coral

10 v1 coral

11 v6 coral

12 >>> qc.exportGraphViz('tutorial-2-coloring')

13 Exporting to tutorial-2-coloring.dot

14 fdp -Tpng tutorial-2-coloring.dot -o tutorial-2-coloring.png

201

Fig. 4.3: 2-coloring of the tutorial graph

MIS and clique enumeration

2-colorings define independent sets of vertices that are maximal in cardinality; for short
called a MIS. Computing such MISs in a given Graph instance may be achieved by the
showMIS() method.

1 >>> g = Graph('tutorialGraph')

2 >>> g.showMIS()

3 *--- Maximal Independent Sets ---*

4 ['v2', 'v5', 'v7']

5 ['v3', 'v5', 'v7']

6 ['v1', 'v2', 'v7']

7 ['v1', 'v3', 'v6', 'v7']

8 ['v1', 'v3', 'v4', 'v6']

9 number of solutions: 5

10 cardinality distribution

11 card.: [0, 1, 2, 3, 4, 5, 6, 7]

12 freq.: [0, 0, 0, 3, 2, 0, 0, 0]

13 execution time: 0.00032 sec.

14 Results in self.misset

15 >>> g.misset

16 [frozenset({'v7', 'v2', 'v5'}),

17 frozenset({'v3', 'v7', 'v5'}),

18 frozenset({'v1', 'v2', 'v7'}),

19 frozenset({'v1', 'v6', 'v7', 'v3'}),

20 frozenset({'v1', 'v6', 'v4', 'v3'})]

A MIS in the dual of a graph instance g (its negation -gPage 18, 14), corresponds to a
maximal clique, i.e. a maximal complete subgraph in g. Maximal cliques may be directly
enumerated with the showCliques() method.

202

1 >>> g.showCliques()

2 *--- Maximal Cliques ---*

3 ['v2', 'v3']

4 ['v4', 'v7']

5 ['v2', 'v4']

6 ['v4', 'v5']

7 ['v1', 'v5']

8 ['v2', 'v6']

9 ['v5', 'v6']

10 number of solutions: 7

11 cardinality distribution

12 card.: [0, 1, 2, 3, 4, 5, 6, 7]

13 freq.: [0, 0, 7, 0, 0, 0, 0, 0]

14 execution time: 0.00049 sec.

15 Results in self.cliques

16 >>> g.cliques

17 [frozenset({'v2', 'v3'}), frozenset({'v4', 'v7'}),

18 frozenset({'v2', 'v4'}), frozenset({'v4', 'v5'}),

19 frozenset({'v1', 'v5'}), frozenset({'v6', 'v2'}),

20 frozenset({'v6', 'v5'})]

Line graphs and maximal matchings

The module also provides a LineGraph constructor. A line graph represents the adja-
cencies between edges of the given graph instance. We may compute for instance the
line graph of the 5-cycle graph.

1 >>> from graphs import CycleGraph, LineGraph

2 >>> g = CycleGraph(order=5)

3 >>> g

4 *------- Graph instance description ------*

5 Instance class : CycleGraph

6 Instance name : cycleGraph

7 Graph Order : 5

8 Graph Size : 5

9 Valuation domain : [-1.00; 1.00]

10 Attributes : ['name', 'order', 'vertices', 'valuationDomain',

11 'edges', 'size', 'gamma']

12 >>> lg = LineGraph(g)

13 >>> lg

14 *------- Graph instance description ------*

15 Instance class : LineGraph

16 Instance name : line-cycleGraph

17 Graph Order : 5

18 Graph Size : 5

19 Valuation domain : [-1.00; 1.00]

(continues on next page)

203

(continued from previous page)

20 Attributes : ['name', 'graph', 'valuationDomain', 'vertices',

21 'order', 'edges', 'size', 'gamma']

22 >>> lg.showShort()

23 *---- short description of the graph ----*

24 Name : 'line-cycleGraph'

25 Vertices : [frozenset({'v1', 'v2'}), frozenset({'v1', 'v5'}),␣

→˓frozenset({'v2', 'v3'}),

26 frozenset({'v3', 'v4'}), frozenset({'v4', 'v5'})]

27 Valuation domain : {'min': Decimal('-1'), 'med': Decimal('0'), 'max':␣

→˓Decimal('1')}

28 Gamma function :

29 frozenset({'v1', 'v2'}) -> [frozenset({'v2', 'v3'}), frozenset({'v1',

→˓'v5'})]

30 frozenset({'v1', 'v5'}) -> [frozenset({'v1', 'v2'}), frozenset({'v4',

→˓'v5'})]

31 frozenset({'v2', 'v3'}) -> [frozenset({'v1', 'v2'}), frozenset({'v3',

→˓'v4'})]

32 frozenset({'v3', 'v4'}) -> [frozenset({'v2', 'v3'}), frozenset({'v4',

→˓'v5'})]

33 frozenset({'v4', 'v5'}) -> [frozenset({'v4', 'v3'}), frozenset({'v1',

→˓'v5'})]

34 degrees : [0, 1, 2, 3, 4]

35 distribution : [0, 0, 5, 0, 0]

36 nbh depths : [0, 1, 2, 3, 4, 'inf.']

37 distribution : [0, 0, 5, 0, 0, 0]

Iterated line graph constructions are usually expanding, except for chordless cycles, where
the same cycle is repeated, and for non-closed paths, where iterated line graphs progres-
sively reduce one by one the number of vertices and edges and become eventually an
empty graph.

Notice that the MISs in the line graph provide maximal matchings - maximal sets of
independent edges - of the original graph.

1 >>> c8 = CycleGraph(order=8)

2 >>> lc8 = LineGraph(c8)

3 >>> lc8.showMIS()

4 *--- Maximal Independent Sets ---*

5 [frozenset({'v3', 'v4'}), frozenset({'v5', 'v6'}), frozenset({'v1', 'v8

→˓'})]

6 [frozenset({'v2', 'v3'}), frozenset({'v5', 'v6'}), frozenset({'v1', 'v8

→˓'})]

7 [frozenset({'v8', 'v7'}), frozenset({'v2', 'v3'}), frozenset({'v5', 'v6

→˓'})]

8 [frozenset({'v8', 'v7'}), frozenset({'v2', 'v3'}), frozenset({'v4', 'v5

→˓'})]

9 [frozenset({'v7', 'v6'}), frozenset({'v3', 'v4'}), frozenset({'v1', 'v8
(continues on next page)

204

(continued from previous page)

→˓'})]

10 [frozenset({'v2', 'v1'}), frozenset({'v8', 'v7'}), frozenset({'v4', 'v5

→˓'})]

11 [frozenset({'v2', 'v1'}), frozenset({'v7', 'v6'}), frozenset({'v4', 'v5

→˓'})]

12 [frozenset({'v2', 'v1'}), frozenset({'v7', 'v6'}), frozenset({'v3', 'v4

→˓'})]

13 [frozenset({'v7', 'v6'}), frozenset({'v2', 'v3'}), frozenset({'v1', 'v8

→˓'}),

14 frozenset({'v4', 'v5'})]

15 [frozenset({'v2', 'v1'}), frozenset({'v8', 'v7'}), frozenset({'v3', 'v4

→˓'}),

16 frozenset({'v5', 'v6'})]

17 number of solutions: 10

18 cardinality distribution

19 card.: [0, 1, 2, 3, 4, 5, 6, 7, 8]

20 freq.: [0, 0, 0, 8, 2, 0, 0, 0, 0]

21 execution time: 0.00029 sec.

The two last MISs of cardinality 4 (see Lines 13-16 above) give isomorphic perfect
maximum matchings of the 8-cycle graph. Every vertex of the cycle is adjacent to a
matching edge. Odd cycle graphs do not admit any perfect matching.

1 >>> maxMatching = c8.computeMaximumMatching()

2 >>> c8.exportGraphViz(fileName='maxMatchingcycleGraph',

3 ... matching=maxMatching)

4 *---- exporting a dot file for GraphViz tools ---------*

5 Exporting to maxMatchingcyleGraph.dot

6 Matching: {frozenset({'v1', 'v2'}), frozenset({'v5', 'v6'}),

7 frozenset({'v3', 'v4'}), frozenset({'v7', 'v8'}) }

8 circo -Tpng maxMatchingcyleGraph.dot -o maxMatchingcyleGraph.png

205

Fig. 4.4: A perfect maximum matching of the 8-cycle graph

Grids and the Ising model

Special classes of graphs, like n x m rectangular or triangular grids (GridGraph and
IsingModel) are available in the graphs module. For instance, we may use a Gibbs
sampler again for simulating an Ising Model on such a grid.

1 >>> from graphs import GridGraph, IsingModel

2 >>> g = GridGraph(n=15,m=15)

3 >>> g.showShort()

4 *----- show short --------------*

5 Grid graph : grid-6-6

6 n : 6

7 m : 6

8 order : 36

9 >>> im = IsingModel(g,beta=0.3,nSim=100000,Debug=False)

10 Running a Gibbs Sampler for 100000 step !

11 >>> im.exportGraphViz(colors=['lightblue','lightcoral'])

12 *---- exporting a dot file for GraphViz tools ---------*

13 Exporting to grid-15-15-ising.dot

14 fdp -Tpng grid-15-15-ising.dot -o grid-15-15-ising.png

206

Fig. 4.5: Ising model of the 15x15 grid graph

Simulating Metropolis random walks

Finally, we provide the MetropolisChain class, a specialization of the Graph class, for
implementing a generic Metropolis MCMC (Monte Carlo Markov Chain) sampler for
simulating random walks on a given graph following a given probability probs = {‘v1’:
x, ‘v2’: y, . . . } for visiting each vertex (see Lines 14-22).

1 >>> from graphs import MetropolisChain

2 >>> g = Graph(numberOfVertices=5,edgeProbability=0.5)

3 >>> g.showShort()

4 *---- short description of the graph ----*

5 Name : 'randomGraph'

6 Vertices : ['v1', 'v2', 'v3', 'v4', 'v5']

7 Valuation domain : {'max': 1, 'med': 0, 'min': -1}

8 Gamma function :

9 v1 -> ['v2', 'v3', 'v4']

(continues on next page)

207

(continued from previous page)

10 v2 -> ['v1', 'v4']

11 v3 -> ['v5', 'v1']

12 v4 -> ['v2', 'v5', 'v1']

13 v5 -> ['v3', 'v4']

1 >>> probs = {} # initialize a potential stationary probability vector

2 >>> n = g.order # for instance: probs[v_i] = n-i/Sum(1:n) for i in 1:n

3 >>> i = 0

4 >>> verticesList = [x for x in g.vertices]

5 >>> verticesList.sort()

6 >>> for v in verticesList:

7 ... probs[v] = (n - i)/(n*(n+1)/2)

8 ... i += 1

The checkSampling() method (see Line 23) generates a random walk of nSim=30000
steps on the given graph and records by the way the observed relative frequency with
which each vertex is passed by.

1 >>> met = MetropolisChain(g,probs)

2 >>> frequency = met.checkSampling(verticesList[0],nSim=30000)

3 >>> for v in verticesList:

4 ... print(v,probs[v],frequency[v])

5

6 v1 0.3333 0.3343

7 v2 0.2666 0.2680

8 v3 0.2 0.2030

9 v4 0.1333 0.1311

10 v5 0.0666 0.0635

In this example, the stationary transition probability distribution, shown by the
showTransitionMatrix() method above (see below), is quite adequately simulated.

1 >>> met.showTransitionMatrix()

2 * ---- Transition Matrix -----

3 Pij | 'v1' 'v2' 'v3' 'v4' 'v5'

4 -----|-------------------------------------

5 'v1' | 0.23 0.33 0.30 0.13 0.00

6 'v2' | 0.42 0.42 0.00 0.17 0.00

7 'v3' | 0.50 0.00 0.33 0.00 0.17

8 'v4' | 0.33 0.33 0.00 0.08 0.25

9 'v5' | 0.00 0.00 0.50 0.50 0.00

For more technical information and more code examples, look into the technical docu-
mentation of the graphs module. For the readers interested in algorithmic applications
of Markov Chains we may recommend consulting O. Häggström’s 2002 book: [FMCAA].

Back to Content Table (page 1)

208

4.2 Computing the non isomorphic MISs of the 12-cycle graph

� Introduction (page 209)

� Computing the maximal independent sets (MISs) (page 210)

� Computing the automorphism group (page 212)

� Computing the isomorphic MISs (page 212)

Introduction

Due to the public success of our common 2008 publication with Jean-Luc Marichal
[ISOMIS-08] , we present in this tutorial an example Python session for computing the
non isomorphic maximal independent sets (MISs) from the 12-cycle graph, i.e. a
CirculantDigraph class instance of order 12 and symmetric circulants 1 and -1.

1 >>> from digraphs import CirculantDigraph

2 >>> c12 = CirculantDigraph(order=12,circulants=[1,-1])

3 >>> c12 # 12-cycle digraph instance

4 *------- Digraph instance description ------*

5 Instance class : CirculantDigraph

6 Instance name : c12

7 Digraph Order : 12

8 Digraph Size : 24

9 Valuation domain : [-1.0, 1.0]

10 Determinateness : 100.000

11 Attributes : ['name', 'order', 'circulants', 'actions',

12 'valuationdomain', 'relation', 'gamma',

13 'notGamma']

Such n-cycle graphs are also provided as undirected graph instances by the CycleGraph
class.

1 >>> from graphs import CycleGraph

2 >>> cg12 = CycleGraph(order=12)

3 >>> cg12

4 *------- Graph instance description ------*

5 Instance class : CycleGraph

6 Instance name : cycleGraph

7 Graph Order : 12

8 Graph Size : 12

9 Valuation domain : [-1.0, 1.0]

10 Attributes : ['name', 'order', 'vertices', 'valuationDomain',

11 'edges', 'size', 'gamma']

12 >>> cg12.exportGraphViz('cg12')

209

Fig. 4.6: The 12-cycle graph

Computing the maximal independent sets (MISs)

A non isomorphic MIS corresponds in fact to a set of isomorphic MISs, i.e. an orbit of
MISs under the automorphism group of the 12-cycle graph. We are now first computing all
maximal independent sets that are detectable in the 12-cycle digraph with the showMIS()
method.

1 >>> c12.showMIS(withListing=False)

2 *--- Maximal independent choices ---*

3 number of solutions: 29

4 cardinality distribution

5 card.: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

6 freq.: [0, 0, 0, 0, 3, 24, 2, 0, 0, 0, 0, 0, 0]

7 Results in c12.misset

In the 12-cycle graph, we observe 29 labelled MISs: – 3 of cardinality 4, 24 of cardinality
5, and 2 of cardinality 6. In case of n-cycle graphs with n > 20, as the cardinality of the
MISs becomes big, it is preferable to use the shell perrinMIS command compiled from
C and installed3 along with all the Digraphs3 python modules for computing the set of
MISs observed in the graph.

3 The perrinMIS shell command may be installed system wide with the command .../Digraph3$

make installPerrin from the main Digraph3 directory. It is stored by default into </usr/local/

bin/>. This may be changed with the INSTALLDIR flag. The command .../Digraph3$ make

210

1 ...$ echo 12 | /usr/local/bin/perrinMIS

2 # -------------------------------------- #

3 # Generating MIS set of Cn with the #

4 # Perrin sequence algorithm. #

5 # Temporary files used. #

6 # even versus odd order optimised. #

7 # RB December 2006 #

8 # Current revision Dec 2018 #

9 # -------------------------------------- #

10 Input cycle order ? <-- 12

11 mis 1 : 100100100100

12 mis 2 : 010010010010

13 mis 3 : 001001001001

14 ...

15 ...

16 ...

17 mis 27 : 001001010101

18 mis 28 : 101010101010

19 mis 29 : 010101010101

20 Cardinalities:

21 0 : 0

22 1 : 0

23 2 : 0

24 3 : 0

25 4 : 3

26 5 : 24

27 6 : 2

28 7 : 0

29 8 : 0

30 9 : 0

31 10 : 0

32 11 : 0

33 12 : 0

34 Total: 29

35 execution time: 0 sec. and 2 millisec.

Reading in the result of the perrinMIS shell command, stored in a file called by default
‘curd.dat’, may be operated with the readPerrinMisset() method.

1 >>> c12.readPerrinMisset(file='curd.dat')

2 >>> c12.misset

3 {frozenset({'5', '7', '10', '1', '3'}),

4 frozenset({'9', '11', '5', '2', '7'}),

5 frozenset({'7', '2', '4', '10', '12'}),

6 ...

(continues on next page)

installPerrinUser installs it instead without sudo into the user’s private <$Home/.bin> directory.

211

(continued from previous page)

7 ...

8 ...

9 frozenset({'8', '4', '10', '1', '6'}),

10 frozenset({'11', '4', '1', '9', '6'}),

11 frozenset({'8', '2', '4', '10', '12', '6'})

12 }

Computing the automorphism group

For computing the corresponding non isomorphic MISs, we actually need the auto-
morphism group of the c12-cycle graph. The Digraph class therefore provides the
automorphismGenerators() method which adds automorphism group generators to a
Digraph class instance with the help of the external shell dreadnaut command from the
nauty software package2.

1 >>> c12.automorphismGenerators()

2

3 ...

4 Permutations

5 {'1': '1', '2': '12', '3': '11', '4': '10', '5':

6 '9', '6': '8', '7': '7', '8': '6', '9': '5', '10':

7 '4', '11': '3', '12': '2'}

8 {'1': '2', '2': '1', '3': '12', '4': '11', '5': '10',

9 '6': '9', '7': '8', '8': '7', '9': '6', '10': '5',

10 '11': '4', '12': '3'}

11 >>> print('grpsize = ', c12.automorphismGroupSize)

12 grpsize = 24

The 12-cycle graph automorphism group is generated with both the permutations above
and has group size 24.

Computing the isomorphic MISs

The command showOrbits() renders now the labelled representatives of each of the four
orbits of isomorphic MISs observed in the 12-cycle graph (see Lines 7-10).

1 >>> c12.showOrbits(c12.misset,withListing=False)

2

3 ...

4 *---- Global result ----

5 Number of MIS: 29

(continues on next page)

2 Dependency: The automorphismGenerators()method uses the shell dreadnaut command from the
nauty software package. See https://www3.cs.stonybrook.edu/~algorith/implement/nauty/implement.
shtml . On Mac OS there exist dmg installers and on Ubuntu Linux or Debian, one may easily install it
with ...$ sudo apt-get install nauty.

212

https://www3.cs.stonybrook.edu/~algorith/implement/nauty/implement.shtml
https://www3.cs.stonybrook.edu/~algorith/implement/nauty/implement.shtml

(continued from previous page)

6 Number of orbits : 4

7 Labelled representatives and cardinality:

8 1: ['2','4','6','8','10','12'], 2

9 2: ['2','5','8','11'], 3

10 3: ['2','4','6','9','11'], 12

11 4: ['1','4','7','9','11'], 12

12 Symmetry vector

13 stabilizer size: [1, 2, 3, ..., 8, 9, ..., 12, 13, ...]

14 frequency : [0, 2, 0, ..., 1, 0, ..., 1, 0, ...]

The corresponding group stabilizers’ sizes and frequencies – orbit 1 with 6 symmetry
axes, orbit 2 with 4 symmetry axes, and orbits 3 and 4 both with one symmetry axis (see
Lines 11-13), are illustrated in the corresponding unlabelled graphs of Fig. 4.7 below.

Fig. 4.7: The symmetry axes of the four non isomorphic MISs of the 12-cycle graph

The non isomorphic MISs in the 12-cycle graph represent in fact all the ways one may
write the number 12 as the circular sum of ‘2’s and ‘3’s without distinguishing opposite
directions of writing. The first orbit corresponds to writing six times a ‘2’; the second
orbit corresponds to writing four times a ‘3’. The third and fourth orbit correspond to
writing two times a ‘3’ and three times a ‘2’. There are two non isomorphic ways to do
this latter circular sum. Either separating the ‘3’s by one and two ‘2’s, or by zero and
three ‘2’s (see Bisdorff & Marichal [ISOMIS-08]).

Back to Content Table (page 1)

213

4.3 About split, interval and permutation graphs

� A multiply perfect graph (page 214)

� Who is the liar ? (page 216)

� Generating permutation graphs (page 219)

� Recognizing permutation graphs (page 222)

A multiply perfect graph

A graph g is called:

� Berge or perfect when g and its dual -g both don’t contain any chordless odd
cycles of length greater than 3 ([BER-1963], [CHU-2006]),

� Triangulated when g does not contain any chordless cycle of length 4.

Following Martin Golumbic (see [GOL-2004] p. 149), we call a given graph g :

� Comparability graph when g is transitively orientable;

� Interval graph when g is triangulated and its dual -g is a comparability graph;

� Permutation graph when g and its dual -g are both comparability graphs;

� Split graph when g and its dual -g are both triangulated graphs.

All these four kinds of graphs are in fact perfect graphs. To illustrate these graph classes,
we generate from 8 intervals, randomly chosen in the default integer range [0,10], a
RandomIntervalIntersectionsGraph instance g (see Listing 4.1 Line 2 below).

Listing 4.1: A multiply perfect random interval intersec-
tion graph

1 >>> from graphs import RandomIntervalIntersectionsGraph

2 >>> g = RandomIntervalIntersectionsGraph(order=8,seed=100)

3 >>> g

4 *------- Graph instance description ------*

5 Instance class : RandomIntervalIntersectionsGraph

6 Instance name : randIntervalIntersections

7 Seed : 100

8 Graph Order : 8

9 Graph Size : 23

10 Valuation domain : [-1.0; 1.0]

11 Attributes : ['seed', 'name', 'order', 'intervals',

12 'vertices', 'valuationDomain',

13 'edges', 'size', 'gamma']

14 >>> print(g.intervals)

15 [(2, 7), (2, 7), (5, 6), (6, 8), (1, 8), (1, 1), (4, 7), (0, 10)]

214

With seed = 100, we obtain here an interval graph, in fact a perfect graph g, which is
conjointly a triangulated, a comparability, a split and a permutation graph (see Listing
4.2 Lines 6,10,14).

Listing 4.2: testing perfect graph categories

1 >>> g.isPerfectGraph(Comments=True)

2 Graph randIntervalIntersections is perfect !

3 >>> g.isIntervalGraph(Comments=True)

4 Graph 'randIntervalIntersections' is triangulated.

5 Graph 'dual_randIntervalIntersections' is transitively orientable.

6 => Graph 'randIntervalIntersections' is an interval graph.

7 >>> g.isSplitGraph(Comments=True)

8 Graph 'randIntervalIntersections' is triangulated.

9 Graph 'dual_randIntervalIntersections' is triangulated.

10 => Graph 'randIntervalIntersections' is a split graph.

11 >>> g.isPermutationGraph(Comments=True)

12 Graph 'randIntervalIntersections' is transitively orientable.

13 Graph 'dual_randIntervalIntersections' is transitively orientable.

14 => Graph 'randIntervalIntersections' is a permutation graph.

15 >>> print(g.computePermutation())

16 ['v5', 'v6', 'v4', 'v2', 'v1', 'v3', 'v7', 'v8']

17 ['v8', 'v6', 'v1', 'v2', 'v3', 'v4', 'v7', 'v5']

18 [8, 2, 6, 5, 7, 4, 3, 1]

19 >>> g.exportGraphViz('randomSplitGraph')

20 *---- exporting a dot file for GraphViz tools ---------*

21 Exporting to randomSplitGraph.dot

22 fdp -Tpng randomSplitGraph.dot -o randomSplitGraph.png

Fig. 4.8: A conjointly triangulated, comparability, interval, permutation and split graph

215

In Fig. 4.8 we may readily recognize the essential characteristic of split graphs, namely
being always splitable into two disjoint sub-graphs: an independent choice {v6} and a
clique {v1, v2, v3, v4, v5, v7, v8}; which explains their name.

Notice however that the four properties:

1. g is a comparability graph;

2. g is a cocomparability graph, i.e. -g is a comparability graph;

3. g is a triangulated graph;

4. g is a cotriangulated graph, i.e. -g is a comparability graph;

are independent of one another (see [GOL-2004] p. 275).

Who is the liar ?

Claude Berge’s famous mystery story (see [GOL-2004] p.20) may well illustrate the im-
portance of being an interval graph.

Suppose that the file ‘berge.py’18 contains the following Graph instance data:

1 vertices = {

2 'A': {'name': 'Abe', 'shortName': 'A'},

3 'B': {'name': 'Burt', 'shortName': 'B'},

4 'C': {'name': 'Charlotte', 'shortName': 'C'},

5 'D': {'name': 'Desmond', 'shortName': 'D'},

6 'E': {'name': 'Eddie', 'shortName': 'E'},

7 'I': {'name': 'Ida', 'shortName': 'I'},

8 }

9 valuationDomain = {'min':-1,'med':0,'max':1}

10 edges = {

11 frozenset(['A','B']) : 1,

12 frozenset(['A','C']) : -1,

13 frozenset(['A','D']) : 1,

14 frozenset(['A','E']) : 1,

15 frozenset(['A','I']) : -1,

16 frozenset(['B','C']) : -1,

17 frozenset(['B','D']) : -1,

18 frozenset(['B','E']) : 1,

19 frozenset(['B','I']) : 1,

20 frozenset(['C','D']) : 1,

21 frozenset(['C','E']) : 1,

22 frozenset(['C','I']) : 1,

23 frozenset(['D','E']) : -1,

24 frozenset(['D','I']) : 1,

(continues on next page)

18 ADigraph3 graphs.Graph encoded file is available in the examples directory of the Digraph3 software
collection.

216

(continued from previous page)

25 frozenset(['E','I']) : 1,

26 }

Six professors (labeled A, B, C, D, E and I) had been to the library on the day that a
rare tractate was stolen. Each entered once, stayed for some time, and then left. If two
professors were in the library at the same time, then at least one of them saw the other.
Detectives questioned the professors and gathered the testimonies that A saw B and E ;
B saw A and I ; C saw D and I ; D saw A and I ; E saw B and I ; and I saw C and
E. This data is gathered in the previous file, where each positive edge {𝑥, 𝑦} models the
testimony that, either x saw y, or y saw x.

1 >>> from graphs import Graph

2 >>> g = Graph('berge')

3 >>> g.showShort()

4 *---- short description of the graph ----*

5 Name : 'berge'

6 Vertices : ['A', 'B', 'C', 'D', 'E', 'I']

7 Valuation domain : {'min': -1, 'med': 0, 'max': 1}

8 Gamma function :

9 A -> ['D', 'B', 'E']

10 B -> ['E', 'I', 'A']

11 C -> ['E', 'D', 'I']

12 D -> ['C', 'I', 'A']

13 E -> ['C', 'B', 'I', 'A']

14 I -> ['C', 'E', 'B', 'D']

15 >>> g.exportGraphViz('berge1')

16 *---- exporting a dot file for GraphViz tools ---------*

17 Exporting to berge1.dot

18 fdp -Tpng berge1.dot -o berge1.png

Fig. 4.9: Graph representation of the testimonies of the professors

From graph theory we know that time interval intersections graphs must in fact be inter-

217

val graphs, i.e. triangulated and co-comparative graphs. The testimonies graph should
therefore not contain any chordless cycle of four and more vertices. Now, the presence or
not of such chordless cycles in the testimonies graph may be checked as follows.

1 >>> g.computeChordlessCycles()

2 Chordless cycle certificate -->>> ['D', 'C', 'E', 'A', 'D']

3 Chordless cycle certificate -->>> ['D', 'I', 'E', 'A', 'D']

4 Chordless cycle certificate -->>> ['D', 'I', 'B', 'A', 'D']

5 [(['D', 'C', 'E', 'A', 'D'], frozenset({'C', 'D', 'E', 'A'})),

6 (['D', 'I', 'E', 'A', 'D'], frozenset({'D', 'E', 'I', 'A'})),

7 (['D', 'I', 'B', 'A', 'D'], frozenset({'D', 'B', 'I', 'A'}))]

We see three intersection cycles of length 4, which is impossible to occur on the linear
time line. Obviously one professor lied!

And it is D ; if we put to doubt his testimony that he saw A (see Line 1 below), we
obtain indeed a triangulated graph instance whose dual is a comparability graph.

1 >>> g.setEdgeValue(('D','A'), 0)

2 >>> g.showShort()

3 *---- short description of the graph ----*

4 Name : 'berge'

5 Vertices : ['A', 'B', 'C', 'D', 'E', 'I']

6 Valuation domain : {'med': 0, 'min': -1, 'max': 1}

7 Gamma function :

8 A -> ['B', 'E']

9 B -> ['A', 'I', 'E']

10 C -> ['I', 'E', 'D']

11 D -> ['I', 'C']

12 E -> ['A', 'I', 'B', 'C']

13 I -> ['B', 'E', 'D', 'C']

14 >>> g.isIntervalGraph(Comments=True)

15 Graph 'berge' is triangulated.

16 Graph 'dual_berge' is transitively orientable.

17 => Graph 'berge' is an interval graph.

18 >>> g.exportGraphViz('berge2')

19 *---- exporting a dot file for GraphViz tools ---------*

20 Exporting to berge2.dot

21 fdp -Tpng berge2.dot -o berge2.png

218

Fig. 4.10: The triangulated testimonies graph

Generating permutation graphs

A graph is called a permutation or inversion graph if there exists a permutation of
its list of vertices such that the graph is isomorphic to the inversions operated by the
permutation in this list (see [GOL-2004] Chapter 7, pp 157-170). This kind is also part
of the class of perfect graphs.

1 >>> from graphs import PermutationGraph

2 >>> g = PermutationGraph(permutation = [4, 3, 6, 1, 5, 2])

3 >>> g

4 *------- Graph instance description ------*

5 Instance class : PermutationGraph

6 Instance name : permutationGraph

7 Graph Order : 6

8 Permutation : [4, 3, 6, 1, 5, 2]

9 Graph Size : 9

10 Valuation domain : [-1.00; 1.00]

11 Attributes : ['name', 'vertices', 'order', 'permutation',

12 'valuationDomain', 'edges', 'size', 'gamma']

13 >>> g.isPerfectGraph()

14 True

15 >>> g.exportGraphViz()

16 *---- exporting a dot file for GraphViz tools ---------*

17 Exporting to permutationGraph.dot

18 fdp -Tpng permutationGraph.dot -o permutationGraph.png

219

Fig. 4.11: The default permutation graph

By using color sorting queues, the minimal vertex coloring for a permutation graph is
computable in 𝑂

(︀
𝑛𝑙𝑜𝑔(𝑛)

)︀
(see [GOL-2004]).

1 >>> g.computeMinimalVertexColoring(Comments=True)

2 vertex 1: lightcoral

3 vertex 2: lightcoral

4 vertex 3: lightblue

5 vertex 4: gold

6 vertex 5: lightblue

7 vertex 6: gold

8 >>> g.exportGraphViz(fileName='coloredPermutationGraph',

9 ... WithVertexColoring=True)

10 *---- exporting a dot file for GraphViz tools ---------*

11 Exporting to coloredPermutationGraph.dot

12 fdp -Tpng coloredPermutationGraph.dot -o coloredPermutationGraph.png

Fig. 4.12: Minimal vertex coloring of the permutation graph

The correspondingly colored matching diagram of the nine inversions -the actual
edges of the permutation graph-, which are induced by the given permutation [4, 3, 6,
1, 5, 2], may as well be drawn with the graphviz neato layout and explicitly positioned
horizontal lists of vertices (see Fig. 4.13).

220

1 >>> g.exportPermutationGraphViz(WithEdgeColoring=True)

2 *---- exporting a dot file for GraphViz tools ---------*

3 Exporting to perm_permutationGraph.dot

4 neato -n -Tpng perm_permutationGraph.dot -o perm_permutationGraph.png

Fig. 4.13: Colored matching diagram of the permutation [4, 3, 6, 1, 5, 2]

As mentioned before, a permutation graph and its dual are transitively orientable. The
transitiveOrientation()method constructs from a given permutation graph a digraph
where each edge of the permutation graph is converted into an arc oriented in increasing
alphabetic order of the adjacent vertices’ keys (see [GOL-2004]). This orientation of the
edges of a permutation graph is always transitive and delivers a transitive ordering of the
vertices.

1 >>> dg = g.transitiveOrientation()

2 >>> dg

3 *------- Digraph instance description ------*

4 Instance class : TransitiveDigraph

5 Instance name : oriented_permutationGraph

6 Digraph Order : 6

7 Digraph Size : 9

8 Valuation domain : [-1.00; 1.00]

9 Determinateness : 100.000

10 Attributes : ['name', 'order', 'actions', 'valuationdomain',

11 'relation', 'gamma', 'notGamma', 'size']

12 >>> print('Transitivity degree: %.3f ' % dg.computeTransitivityDegree())

13 Transitivity degree: 1.000

14 >>> dg.exportGraphViz()

15 *---- exporting a dot file for GraphViz tools ---------*

16 Exporting to oriented_permutationGraph.dot

17 0 { rank = same; 1; 2; }

18 1 { rank = same; 5; 3; }

19 2 { rank = same; 4; 6; }

20 dot -Grankdir=TB -Tpng oriented_permutationGraph.dot -o oriented_

→˓permutationGraph.png

221

Fig. 4.14: Hasse diagram of the transitive orientation of the permutation graph

The dual of a permutation graph is again a permutation graph and as such also transi-
tively orientable.

1 >>> dgd = (-g).transitiveOrientation()

2 >>> print('Dual transitivity degree: %.3f ' %\

3 ... dgd.computeTransitivityDegree())

4

5 Dual transitivity degree: 1.000

Recognizing permutation graphs

Now, a given graph g is a permutation graph if and only if both g and -g are
transitively orientable. This property gives a polynomial test procedure (in 𝑂(𝑛3) due to
the transitivity check) for recognizing permutation graphs.

Let us consider, for instance, the following random graph of order 8 generated with an
edge probability of 40% and a random seed equal to 4335.

1 >>> from graphs import *

2 >>> g = RandomGraph(order=8,edgeProbability=0.4,seed=4335)

3 >>> g

4 *------- Graph instance description ------*

5 Instance class : RandomGraph

6 Instance name : randomGraph

7 Seed : 4335

8 Edge probability : 0.4

9 Graph Order : 8

10 Graph Size : 10

(continues on next page)

222

(continued from previous page)

11 Valuation domain : [-1.00; 1.00]

12 Attributes : ['name', 'order', 'vertices', 'valuationDomain',

13 'seed', 'edges', 'size',

14 'gamma', 'edgeProbability']

15 >>> g.isPerfectGraph()

16 True

17 >>> g.exportGraphViz()

Fig. 4.15: Random graph of order 8 generated with edge probability 0.4

If the random perfect graph instance g (see Fig. 4.15) is indeed a permutation graph,
g and its dual -g should be transitively orientable, i.e. comparability graphs (see
[GOL-2004]). With the isComparabilityGraph() test, we may easily check this fact.
This method proceeds indeed by trying to construct a transitive neighbourhood decom-
position of a given graph instance and, if successful, stores the resulting edge orientations
into a self.edgeOrientations attribute (see [GOL-2004] p.129-132).

1 >>> if g.isComparabilityGraph():

2 ... print(g.edgeOrientations)

3

4 {('v1', 'v1'): 0, ('v1', 'v2'): 1, ('v2', 'v1'): -1, ('v1', 'v3'): 1,

5 ('v3', 'v1'): -1, ('v1', 'v4'): 1, ('v4', 'v1'): -1, ('v1', 'v5'): 0,

6 ('v5', 'v1'): 0, ('v1', 'v6'): 1, ('v6', 'v1'): -1, ('v1', 'v7'): 0,

7 ('v7', 'v1'): 0, ('v1', 'v8'): 1, ('v8', 'v1'): -1, ('v2', 'v2'): 0,

8 ('v2', 'v3'): 0, ('v3', 'v2'): 0, ('v2', 'v4'): 0, ('v4', 'v2'): 0,

9 ('v2', 'v5'): 0, ('v5', 'v2'): 0, ('v2', 'v6'): 0, ('v6', 'v2'): 0,

10 ('v2', 'v7'): 0, ('v7', 'v2'): 0, ('v2', 'v8'): 0, ('v8', 'v2'): 0,

11 ('v3', 'v3'): 0, ('v3', 'v4'): 0, ('v4', 'v3'): 0, ('v3', 'v5'): 0,
(continues on next page)

223

(continued from previous page)

12 ('v5', 'v3'): 0, ('v3', 'v6'): 0, ('v6', 'v3'): 0, ('v3', 'v7'): 0,

13 ('v7', 'v3'): 0, ('v3', 'v8'): 0, ('v8', 'v3'): 0, ('v4', 'v4'): 0,

14 ('v4', 'v5'): 0, ('v5', 'v4'): 0, ('v4', 'v6'): 0, ('v6', 'v4'): 0,

15 ('v4', 'v7'): 0, ('v7', 'v4'): 0, ('v4', 'v8'): 0, ('v8', 'v4'): 0,

16 ('v5', 'v5'): 0, ('v5', 'v6'): 1, ('v6', 'v5'): -1, ('v5', 'v7'): 1,

17 ('v7', 'v5'): -1, ('v5', 'v8'): 1, ('v8', 'v5'): -1, ('v6', 'v6'): 0,

18 ('v6', 'v7'): 0, ('v7', 'v6'): 0, ('v6', 'v8'): 1, ('v8', 'v6'): -1,

19 ('v7', 'v7'): 0, ('v7', 'v8'): 1, ('v8', 'v7'): -1, ('v8', 'v8'): 0}

Fig. 4.16: Transitive neighbourhoods of the graph g

The resulting orientation of the edges of g (see Fig. 4.16) is indeed transitive. The same
procedure applied to the dual graph gd = -g gives a transitive orientation to the edges of
-g.

1 >>> gd = -g

2 >>> if gd.isComparabilityGraph():

3 ... print(gd.edgeOrientations)

4

5 {('v1', 'v1'): 0, ('v1', 'v2'): 0, ('v2', 'v1'): 0, ('v1', 'v3'): 0,

6 ('v3', 'v1'): 0, ('v1', 'v4'): 0, ('v4', 'v1'): 0, ('v1', 'v5'): 1,

7 ('v5', 'v1'): -1, ('v1', 'v6'): 0, ('v6', 'v1'): 0, ('v1', 'v7'): 1,

8 ('v7', 'v1'): -1, ('v1', 'v8'): 0, ('v8', 'v1'): 0, ('v2', 'v2'): 0,

9 ('v2', 'v3'): -2, ('v3', 'v2'): 2, ('v2', 'v4'): -3, ('v4', 'v2'): 3,

10 ('v2', 'v5'): 1, ('v5', 'v2'): -1, ('v2', 'v6'): 1, ('v6', 'v2'): -1,

11 ('v2', 'v7'): 1, ('v7', 'v2'): -1, ('v2', 'v8'): 1, ('v8', 'v2'): -1,

12 ('v3', 'v3'): 0, ('v3', 'v4'): -3, ('v4', 'v3'): 3, ('v3', 'v5'): 1,

13 ('v5', 'v3'): -1, ('v3', 'v6'): 1, ('v6', 'v3'): -1, ('v3', 'v7'): 1,
(continues on next page)

224

(continued from previous page)

14 ('v7', 'v3'): -1, ('v3', 'v8'): 1, ('v8', 'v3'): -1, ('v4', 'v4'): 0,

15 ('v4', 'v5'): 1, ('v5', 'v4'): -1, ('v4', 'v6'): 1, ('v6', 'v4'): -1,

16 ('v4', 'v7'): 1, ('v7', 'v4'): -1, ('v4', 'v8'): 1, ('v8', 'v4'): -1,

17 ('v5', 'v5'): 0, ('v5', 'v6'): 0, ('v6', 'v5'): 0, ('v5', 'v7'): 0,

18 ('v7', 'v5'): 0, ('v5', 'v8'): 0, ('v8', 'v5'): 0, ('v6', 'v6'): 0,

19 ('v6', 'v7'): 1, ('v7', 'v6'): -1, ('v6', 'v8'): 0, ('v8', 'v6'): 0,

20 ('v7', 'v7'): 0, ('v7', 'v8'): 0, ('v8', 'v7'): 0, ('v8', 'v8'): 0}

Fig. 4.17: Transitive neighbourhoods of the dual graph -g

It is worthwhile noticing that the orientation of g is achieved with a single neighbourhood
decomposition, covering all the vertices. Whereas, the orientation of the dual -g needs a
decomposition into three subsequent neighbourhoods marked in black, red and blue (see
Fig. 4.17).

Let us recheck these facts by explicitly constructing transitively oriented digraph instances
with the computeTransitivelyOrientedDigraph() method.

1 >>> og = g.computeTransitivelyOrientedDigraph(PartiallyDetermined=True)

2 >>> print('Transitivity degree: %.3f ' % (og.transitivityDegree))

3 Transitivity degree: 1.000

4 >>> ogd = (-g).

→˓computeTransitivelyOrientedDigraph(PartiallyDetermined=True)

5 >>> print('Transitivity degree: %.3f ' % (ogd.transitivityDegree))

6 Transitivity degree: 1.000

The PartiallyDetermined=True flag (see Lines 1 and 4) is required here in order to orient
only the actual edges of the graphs. Relations between vertices not linked by an edge
will be put to the indeterminate characteristic value 0. This will allow us to compute,
later on, convenient disjunctive digraph fusions.

As both graphs are indeed transitively orientable (see Lines 3 and 6 above), we may
conclude that the given random graph g is actually a permutation graph instance. Yet,

225

we still need to find now its corresponding permutation. We therefore implement a recipee
given by Martin Golumbic [GOL-2004] p.159.

We will first fuse both og and ogd orientations above with an epistemic disjunction
(see the omax() operator), hence, the partially determined orientations requested above.

Listing 4.3: Fusing graph orientations

1 >>> from digraphs import FusionDigraph

2 >>> f1 = FusionDigraph(og,ogd,operator='o-max')

3 >>> s1 = f1.computeCopelandRanking()

4 >>> print(s1)

5 ['v5', 'v7', 'v1', 'v6', 'v8', 'v4', 'v3', 'v2']

We obtain by the Copeland ranking rule (see tutorial on ranking with incommensurable
criteria (page 72) and the computeCopelandRanking() method) a linear ordering of the
vertices (see Listing 4.3 Line 5 above).

We reverse now the orientation of the edges in og (see -og in Line 1 below) in order to
generate, again by disjunctive fusion, the inversions that are produced by the permutation
we are looking for. Computing again a ranking with the Copeland rule, will show the
correspondingly permuted list of vertices (see Line 4 below).

1 >>> f2 = FusionDigraph((-og),ogd,operator='o-max')

2 >>> s2 = f2.computeCopelandRanking()

3 >>> print(s2)

4 ['v8', 'v7', 'v6', 'v5', 'v4', 'v3', 'v2', 'v1']

Vertex v8 is put from position 5 to position 1, vertex v7 is put from position 2 to position
2, vertex v6 from position 4 to position 3, ‘vertex v5 from position 1 to position 4, etc
. . . . We generate these position swaps for all vertices and obtain thus the required
permutation (see Line 5 below).

1 >>> permutation = [0 for j in range(g.order)]

2 >>> for j in range(g.order):

3 ... permutation[s2.index(s1[j])] = j+1

4

5 >>> print(permutation)

6 [5, 2, 4, 1, 6, 7, 8, 3]

It is worthwhile noticing by the way that transitive orientations of a given graph and its
dual are usually not unique and, so may also be the resulting permutations. However,
they all correspond to isomorphic graphs (see [GOL-2004]). In our case here, we observe
two different permutations and their reverses:

1 s1: ['v1', 'v4', 'v3', 'v2', 'v5', 'v6', 'v7', 'v8']

2 s2: ['v4', 'v3', 'v2', 'v8', 'v6', 'v1', 'v7', 'v5']

3 (s1 -> s2): [2, 3, 4, 8, 6, 1, 7, 5]

4 (s2 -> s1): [6, 1, 2, 3, 8, 5, 7, 4]

And:

226

1 s3: ['v5', 'v7', 'v1', 'v6', 'v8', 'v4', 'v3', 'v2']

2 s4: ['v8', 'v7', 'v6', 'v5', 'v4', 'v3', 'v2', 'v1']

3 (s3 -> s4): [5, 2, 4, 1, 6, 7, 8, 3]

4 (s4 -> s3) = [4, 2, 8, 3, 1, 5, 6, 7]

The computePermutation() method does directly operate all these steps: - computing
transitive orientations, - ranking their epistemic fusion and, - delivering a corresponding
permutation.

1 >>> g.computePermutation(Comments=True)

2 ['v1', 'v2', 'v3', 'v4', 'v5', 'v6', 'v7', 'v8']

3 ['v2', 'v3', 'v4', 'v8', 'v6', 'v1', 'v7', 'v5']

4 [2, 3, 4, 8, 6, 1, 7, 5]

We may finally check that, for instance, the two permutations [2, 3, 4, 8, 6, 1, 7, 5] and
[4, 2, 8, 3, 1, 5, 6, 7] observed above, will correctly generate corresponding isomorphic
permutation graphs.

1 >>> gtesta = PermutationGraph(permutation=[2, 3, 4, 8, 6, 1, 7, 5])

2 >>> gtestb = PermutationGraph(permutation=[4, 2, 8, 3, 1, 5, 6, 7])

3 >>> gtesta.exportGraphViz('gtesta')

4 >>> gtestb.exportGraphViz('gtestb')

Fig. 4.18: Isomorphic permutation graphs

And, we recover indeed two isomorphic copies of the original random graph (compare
Fig. 4.18 with Fig. 4.15).

Back to Content Table (page 1)

227

4.4 On computing fair intergroup pairings

� The fair intergroup pairing problem (page 228)

� Generating the set of potential maximal matchings (page 230)

� Measuring the fitness of a matching from a personal perspective (page 231)

� Computing the fairest intergroup pairing (page 232)

� Fair versus stable pairings (page 236)

� Relaxing the requirement for complete linear voting profiles (page 249)

� Using Copeland scores for guiding the fairness enhancement (page 252)

� Starting the fairness enhancement from a best determined Copeland matching
(page 254)

The fair intergroup pairing problem

Fairness: impartial and just treatment or behaviour without favouritism or
discrimination

– Oxford Languages

A set of persons consists of two groups –group A and group B– of equal size k. For a
social happening, it is requested to build k pairs of persons from each group.

In order to guide the matching decisions, each person of group A communicates her
pairing preferences with a linear ranking of the persons in group B and each person of
group B communicates her pairing preferences with a linear ranking of the persons in
group A.

The set of all potential matching decisions corresponds to the set of maximal matchings
of the complete bipartite graph formed by the two groups A and B. Its cardinality is
factorial k.

How to choose now in this possibly huge set the one maximal matching that makes a
fair balance of the given individual pairing preferences? To help make this decision we
will compute for all maximal matchings a fitness score consisting of their average ordinal
correlation index with the given marginal pairing preferences. Eventually we will choose
a maximal matching that results in the highest possible fitness score.

Let us consider for instance a set of four persons divided into group A, {a1, a2}, and
group B, {b1, b2}. Person a1 prefers as partner Person b2, and Person a2 prefers as
partner Person b1. Reciprocally, Person b1 prefers Person a2 over a1 and Person b2
finally prefers a1 over a2. There exist only two possible maximal matchings,

(1) a1 with b1 and a2 with b2, or

(2) a1 with b2 and a2 with b1.

228

Making the best matching decision in this setting here is trivial. Choosing matching (1)
will result in an ordinal correlation index of -1 for all four persons, whereas matching (2)
is in total ordinal concordance with everybody’s preferences and will result in an average
ordinal correlation index of +1.0.

Can we generalise this approach to larger groups and partially determined ordinal corre-
lation scores?

Reciprocal linear voting profiles

Let us consider two groups of size k = 5. Individual pairing preferences of
the persons in group A and group B may be randomly generated with reciprocal
RandomLinearVotingProfile instances called lvA1 and lvB1 (see below).

1 >>> from votingProfiles import RandomLinearVotingProfile

2 >>> k = 5

3 >>> lvA1 = RandomLinearVotingProfile(

4 ... numberOfVoters=k,numberOfCandidates=k,

5 ... votersIdPrefix='a',

6 ... candidatesIdPrefix='b',seed=1)

7 >>> lvA1.save('lvA1')

8 >>> lvB1 = RandomLinearVotingProfile(

9 ... numberOfVoters=k,numberOfCandidates=k,

10 ... votersIdPrefix='b',

11 ... candidatesIdPrefix='a',seed=2)

12 >>> lvB1.save('lvB1')

We may inspect the resulting stored pairing preferences for each person in group A and
each person in group B with the showLinearBallots() method49.

1 >>> from votingProfiles import LinearVotingProfile

2 >>> lvA1 = LinearVotingProfile('lvA1')

3 >>> lvA1.showLinearBallots()

4 voters marginal

5 (weight) candidates rankings

6 a1(1): ['b3', 'b4', 'b5', 'b1', 'b2']

7 a2(1): ['b3', 'b5', 'b4', 'b2', 'b1']

8 a3(1): ['b4', 'b2', 'b1', 'b3', 'b5']

9 a4(1): ['b2', 'b4', 'b1', 'b5', 'b3']

10 a5(1): ['b4', 'b2', 'b3', 'b1', 'b5']

11 >>> lvB1 = LinearProfile('lvB1')

12 >>> lvB1.showLinearBallots()

13 voters marginal

14 (weight) candidates rankings

15 b1(1): ['a3', 'a2', 'a4', 'a5', 'a1']

16 b2(1): ['a5', 'a3', 'a1', 'a4', 'a2']

(continues on next page)

49 The stored versions lvAx.py, lvBx.py, apA1.py and apB1.py of the examples of reciprocal randdom
voting profiles discussed in the intergroup pairing tutorial may be found in the examples directory of the
Digraph3 resources.

229

(continued from previous page)

17 b3(1): ['a3', 'a4', 'a1', 'a5', 'a2']

18 b4(1): ['a3', 'a4', 'a1', 'a2', 'a5']

19 b5(1): ['a3', 'a4', 'a1', 'a2', 'a5']

With these given individual pairing preferences, there does no more exist a quick trivial
matching solution to our pairing problem. Persons a1 and a2 prefer indeed to be matched
to the same Person b3. Worse, Persons b1, b3, b4 and b5 all four want also to be preferably
matched to a same Person a3, but Person a3 apparently prefers as partner only Person
b4.

How to find now a maximal matching that will fairly balance the individual pairing
preferences of both groups? To solve this decision problem, we first must generate the
potential decision actions, i.e. all potential maximal matchings between group A and
group B.

Generating the set of potential maximal matchings

The maximal matchings correspond in fact to the maximal independent sets of edges of
the complete bipartite graph linking group A to group B. To compute this set we will use
the CompleteBipartiteGraph class from the graphs module (see Lines 3-4 below).

1 >>> groupA = [p for p in lvA1.voters]

2 >>> groupB = [p for p in lvB1.voters]

3 >>> from graphs import CompleteBipartiteGraph

4 >>> bpg = CompleteBipartiteGraph(groupA,groupB)

5 >>> bpg

6 *------- Graph instance description ------*

7 Instance class : Graph

8 Instance name : bipartitegraph

9 Graph Order : 10

10 Graph Size : 25

11 Valuation domain : [-1.00; 1.00]

12 Attributes : ['name', 'vertices',

13 'verticesKeysA', 'verticesKeysB',

14 'order', 'valuationDomain',

15 'edges', 'size', 'gamma']

Now, the maximal matchings of the bipartte graph bpg correspond to the MISs of its line
graph lbpg. Therefore we use the LineGraph class from the graphs module.

1 >>> from graphs import LineGraph

2 >>> lbpg = LineGraph(bpg)

3 >>> lbpg

4 *------- Graph instance description ------*

5 Instance class : LineGraph

6 Instance name : line-bipartite_completeGraph_graph

(continues on next page)

230

(continued from previous page)

7 Graph Order : 25

8 Graph Size : 100

9 >>> lbpg.computeMIS()

10 >>> lbpg.showMIS()

11 *--- Maximal Independent Sets ---*

12 number of solutions: 120

13 cardinality distribution

14 card.: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,]

15 freq.: [0, 0, 0, 0, 0, 120, 0, 0, 0, 0, 0,]

16 stability number : 5

17 execution time: 0.01483 sec.

18 Results in self.misset

The set of maximal matchings between persons of groups A and B has cardinality factorial
5! = 120 (see Line 15 above) and is stored in attribute lbpg.misset. We may for instance
print the pairing corresponding to the first maximal matching.

1 >>> for m in lbpg.misset[0]:

2 ... pair = list(m)

3 ... pair.sort()

4 ... print(pair)

5 ['a1', 'b4']

6 ['a2', 'b3']

7 ['a3', 'b5']

8 ['a4', 'b2']

9 ['a5', 'b1']

Each maximal matching delivers thus for each person a partially determined ranking. For
Person a1, for instance, this matching ranks b4 before all the other persons from group
B and for Person b4, for instance, this matching ranks a1 before all other persons from
group A.

How to judge now the global pairing fitness of this matching?

Measuring the fitness of a matching from a personal perspective

Below we may reinspect the actual pairing preferences of each person.

1 >>> lvA1.showLinearBallots()

2 voters marginal

3 (weight) candidates rankings

4 a1(1): ['b3', 'b4', 'b5', 'b1', 'b2']

5 a2(1): ['b3', 'b5', 'b4', 'b2', 'b1']

6 a3(1): ['b4', 'b2', 'b1', 'b3', 'b5']

7 a4(1): ['b2', 'b4', 'b1', 'b5', 'b3']

8 a5(1): ['b4', 'b2', 'b3', 'b1', 'b5']

(continues on next page)

231

(continued from previous page)

9 >>> lvB1.showLinearBallots()

10 voters marginal

11 (weight) candidates rankings

12 b1(1): ['a3', 'a2', 'a4', 'a5', 'a1']

13 b2(1): ['a5', 'a3', 'a1', 'a4', 'a2']

14 b3(1): ['a3', 'a4', 'a1', 'a5', 'a2']

15 b4(1): ['a3', 'a4', 'a1', 'a2', 'a5']

16 b5(1): ['a3', 'a4', 'a1', 'a2', 'a5']

In the first matching shown in the previous Listing, Person a1 is for instance matched
with Person b4, which was her second choice. Whereas for Person b4 the match with
Person a1 is only her third choice.

For a given person, we may hence compute the ordinal correlation –the relative number
of correctly ranked persons minus the relative number of incorrectly ranked persons–
between the partial ranking defined by the given matching and the individual pairing
preferences, just ignoring the indeterminate comparisons.

For Person a1, for instance, the matching ranks b4 before all the other persons from group
B whereas a1 ’s individual preferences rank b4 second behind b3. We observe hence 3
correctly ranked persons –b5, b1 and b2– minus 1 incorrectly ranked person –b3– out of
four determined comparisons. The resulting ordinal correlation index amounts to (3-1)/4
= +0.5.

For Person b4, similarly, we count 2 correctly ranked persons –a2 and a5– and 2 incor-
rectly ranked persons –a3 and a4– out of the four determined comparisons. The resulting
ordinal correlation amounts hence to (2-2)/4 = 0.0

For a given maximal matching we obtain thus 10 ordinal correlation indexes, one for each
person in both groups. And, we may now score the global fitness of a given matching
by computing the average over all the individual ordinal correlation indexes observed in
group A and group B.

Computing the fairest intergroup pairing

The pairings module provides the FairestInterGroupPairing class for solving, fol-
lowing this way, a given pairing problem of tiny order 5 (see below).

1 >>> from pairings import FairestInterGroupPairing

2 >>> fp = FairestInterGroupPairing(lvA1,lvB1)

3 >>> fp

4 *------- FairPairing instance description ------*

5 Instance class : FairestInterGroupPairing

6 Instance name : pairingProblem

7 Groups A and B size : 5

8 Attributes : ['name', 'order', 'vpA', 'vpB',

9 'pairings', 'matching',

(continues on next page)

232

(continued from previous page)

10 'vertices', 'valuationDomain',

11 'edges', 'gamma', 'runTimes']

The class takes as input two reciprocal VotingProfile objects describing the individ-
ual pairing preferences of the two groups A and B of persons. The class constructor
delivers the attributes shown above. vpA and vpB contain the pairing preferences. The
pairings attribute gathers all maximal matchings –the potential decision actions– or-
dered by decreasing average ordinal correlation with the individual pairing preferences,
whereas the matching attribute delivers directly the first-ranked maximal matching –pair-
ings[0][0]– and may be consulted as shown in the Listing below. The resulting fp object
models in fact a BipartiteGraph object where the vertices correspond to the set of per-
sons in both groups and the bipartite edges model the fairest maximal matching. The
showFairestPairing() method prints out the fairest matching.

1 >>> fp.showFairestPairing(rank=1,

2 ... WithIndividualCorrelations=True)

3 *------------------------------*

4 Fairest pairing

5 ['a1', 'b3']

6 ['a2', 'b5']

7 ['a3', 'b1']

8 ['a4', 'b4']

9 ['a5', 'b2']

10 groupA correlations:

11 'a1': +1.000

12 'a2': +0.500

13 'a3': 0.000

14 'a4': +0.500

15 'a5': +0.500

16 group A average correlations (a) : 0.500

17 group A standard deviation : 0.354

18 ----

19 groupB Correlations:

20 'b1': +1.000

21 'b2': +1.000

22 'b3': 0.000

23 'b4': +0.500

24 'b5': -0.500

25 group B average correlations (b) : 0.400

26 group B standard deviation : 0.652

27 ----

28 Average correlation : 0.450

29 Standard Deviation : 0.497

30 Unfairness |(a) - (b)| : 0.100

Three persons –a1, b1 and b2– get as partner their first choice (+1.0). Four persons –a2,
a4, a5 and b4– get their second choice (+0.5). Two persons –a3 and b3– get their third

233

choice (0.0). Person b5 gets only her fourth choice. Both group get very similar average
ordinal correlation results – +0.500 versus +0.400– resulting in a low unfairness score
(see last Line above)

In this problem we may observe a 2nd-ranked pairing, of same average correlation score
+0.450, but with both a larger standard deviation (0.55 versus 0.45) and a larger unfair-
ness score (0.300 versus 0.100).

1 >>> fp.showFairestPairing(rank=2,

2 ... WithIndividualCorrelations=True)

3 *------------------------------*

4 2nd-ranked pairing

5 ['a1', 'b3']

6 ['a2', 'b5']

7 ['a3', 'b4']

8 ['a4', 'b1']

9 ['a5', 'b2']

10 group A correlations:

11 'a1': +1.000

12 'a2': +0.500

13 'a3': +1.000

14 'a4': +0.000

15 'a5': +0.500

16 group A average correlations (a) : 0.600

17 group A standard deviation : 0.418

18 ----

19 group B correlations:

20 'b1': +0.000

21 'b2': +1.000

22 'b3': +0.000

23 'b4': +1.000

24 'b5': -0.500

25 group B average correlations (b) : 0.300

26 group B standard deviation : 0.671

27 ---

28 Average correlation : 0.450

29 Standard Deviation : 0.550

30 Unfairness |(a) - (b)| : 0.300

In this second-fairest pairing solution, four persons –a1, a3, b2 and b4– get their first
choice. Only two persons –a2 and a5– get their second choice, but three persons –a4,
b1 and b3– now only get their third choice. Person b5 gets unchanged her fourth choice.
Despite a same average correlation (+0.45), the distribution of the individual correlations
appears less balanced than in the previous solution, as confirmed by the higher standard
deviation. In the latter pairing, group A shows indeed an average correlation of +3.000/5
= +0.600, whereas group B obtains only an average correlation of 1.500/5 = +0.300.

In the previous pairing, group A gets a lesser average correlation of +0.500. And, group
B obtains here a higher average correlation of 2.000/5 = +0.400. Which makes the first-

234

ranked pairing with same average ordinal correlation yet lower standard deviation, an
effectively fairer matching decision.

One may visualise a pairing result with the exportPairingGraphViz() method (see Fig.
4.19 below).

>>> fp.exportPairingGraphViz(fileName='fairPairing',

... matching=fp.matching)

dot -Tpng fairPairing.dot -o fairPairing.png

Fig. 4.19: Fairest intergroup pairing decision

A matching corresponds in fact to a certain permutation of the positional indexes of the
persons in group B. We may compute this permutation and construct the corresponding
permutation graph.

1 >>> permutation = fp.computePermutation(fp.matching)

2 >>> from graphs import PermutationGraph

3 >>> pg = PermutationGraph(permutation)

4 >>> pg

5 *------- Graph instance description ------*

6 Instance class : PermutationGraph

(continues on next page)

235

(continued from previous page)

7 Instance name : matching-permutation

8 Graph Order : 5

9 Permutation : [3, 5, 1, 4, 2]

10 Graph Size : 6

11 Valuation domain : [-1.00; 1.00]

12 Attributes : ['name', 'vertices', 'order',

13 'permutation', 'valuationDomain',

14 'edges', 'size', 'gamma']

15 >>> pg.exportPermutationGraphViz(fileName='fairPairingPermutation')

16 *---- exporting a dot file for GraphViz tools ---------*

17 Exporting to farPairingPermutation.dot

18 neato -n -Tpng fairPairingPermutation.dot -o fairPairingPermutation.png

Fig. 4.20: Fairest pairing’s coloured matching diagram

In Fig. 4.20 is shown the coloured matching diagram of the index permutation [3, 5, 1,
4, 2] modelled by the fairest pairing decision.

Mind that our FairestInterGroupPairing class does not provide an efficient algorithm
for computing fair pairings; far from it. Our class constructor’s complexity is in 𝑂(𝑘!),
which makes the class totally unfit for solving any real pairing problem even of small
size. The class has solely the didactic purpose of giving a first insight into this important
and practically relevant decision problem. For efficiently solving this kind of pairing
decision problems it is usual professional practice to concentrate the set of potential
pairing decisions on stable matchings45 .

Fair versus stable pairings

In classical economics, where the homo economicus is supposed to ignore any idea of
fairness and behave solely in exact accordance with his rational self-interest, a pairing
is only considered suitable when there appear no matching instabilities. A matching is
indeed called stable when there does not exist in the matching a couple of pairs such that
it may be interesting for both a paired person from group A and a paired person from
group B to abandon their given partners and form together a new pair. Let us consider
for instance the following situation,

45 See https://en.wikipedia.org/wiki/Gale%E2%80%93Shapley_algorithm

236

https://en.wikipedia.org/wiki/Gale%E2%80%93Shapley_algorithm

Person a3 is paired with Person b1.

Person b4 is paired with Person a4.

Person a3 would rather be with Person b4

Person b4 would rather be with Person a3

Computing such a stable matching may be done with the famous Gale-Shapley algorithm
(43,Page 236, 45), available via the FairestGaleShapleyMatching class (see below Line 1).

1 >>> from pairings import FairestGaleShapleyMatching

2 >>> fgs = FairestGaleShapleyMatching(lvA1,lvB1)

3 >>> fgs.showPairing(fgs.matching)

4 *-----------*

5 Pairing

6 ['a1', 'b3']

7 ['a2', 'b5']

8 ['a3', 'b4']

9 ['a4', 'b1']

10 ['a5', 'b2']

We have already seen this Gale-Shapley pairing solution. It is in fact the 2nd-ranked
fairest pairing, discussed in the previous section. Now, is the fact of being stable any
essential characteristic of a fair pairing solution?

In a Monte Carlo simulation of solving 1000 random pairing problems of order 5, we
obtain the following distribution of the actual fairness ranking indexes of the fairest
stable matching.

43 [GAL-1962]

237

Fig. 4.21: Distribution of the fairness rank of the fairest stable matching

In Fig. 4.21 we may notice that only in a bit more than 50% of the cases, the overall
fairest matching –of index 0 in the fp.pairings list– is indeed stable.

And the overall fairest matching in our example above is, for instance, not a stable
matching (see Lines 2-3 below).

1 >>> fp.isStableMatching(fp.matching,Comments=True)

2 *------------------------------*

3 ['a1', 'b3']

4 ['a2', 'b5']

5 ['a3', 'b1']

6 ['a4', 'b4']

7 ['a5', 'b2']

8 is unstable!

9 a3 b4 <-- b1: rank improvement 0 --> 2

10 b4 a3 <-- a4: rank improvement 0 --> 1

If we resolve its unstable pairs –[a3, b1] –> [a3, b4] , and [a4, b4] –> [a4, b1]– we recover
the previous Gale-Shapley solution, i.e the 2nd-fairest pairing solution (see above).

Unfairness of the Gale-Shapley solution

The Gale-Shapley algorithm is actually based on an asymmetric handling of the two
groups of persons by distinguishing a matches proposing group. In our implementation
here44, it is group A. Now, the proposing group gets by the Gale-Shapley algorithm the

44 Our implementation is based on John Lekberg’s blog. See https://johnlekberg.com/blog/
2020-08-22-stable-matching.html

238

https://johnlekberg.com/blog/2020-08-22-stable-matching.html
https://johnlekberg.com/blog/2020-08-22-stable-matching.html

best possible average group correlation, but of costs of the non-proposing group who gets
the worst possible average group correlation in any stable matchingPage 236, 45. We may
check as follows this unfair result on the previous Gale-Shapley solution.

1 >>> fgs.showMatchingFairness(fgs.matching,

2 ... WithIndividualCorrelations=True)

3 *------------------------------*

4 ['a1', 'b3']

5 ['a2', 'b5']

6 ['a3', 'b4']

7 ['a4', 'b1']

8 ['a5', 'b2']

9 -----

10 group A correlations:

11 'a1': +1.000

12 'a2': +0.500

13 'a3': +1.000

14 'a4': +0.000

15 'a5': +0.500

16 group A average correlations (a) : 0.600

17 group A standard deviation : 0.418

18 -----

19 group B correlations:

20 'b1': +0.000

21 'b2': +1.000

22 'b3': +0.000

23 'b4': +1.000

24 'b5': -0.500

25 group B average correlations (b) : 0.300

26 group B standard deviation : 0.671

27 -----

28 Average correlation : 0.450

29 Standard Deviation : 0.550

30 Unfairness |(a) - (b)| : 0.300

Four persons out of five from group A are matched to their first or second choices. When
reversing the order of the given linear voting profiles lvA1 and lvB1, we obtain a second
Gale-Shapley solution gs2 favouring this time the persons in group B.

1 >>> gs2 = fgs.computeGaleShapleyMatching(Reverse=True)

2 >>> fgs.showMatchingFairness(gs2,

3 ... WithIndividualCorrelations=True)

4 *------------------------------*

5 ['a1', 'b3']

6 ['a2', 'b1']

7 ['a3', 'b4']

8 ['a4', 'b5']

9 ['a5', 'b2']

(continues on next page)

239

(continued from previous page)

10 -----

11 group A correlations:

12 'a1': +1.000

13 'a2': -1.000

14 'a3': +1.000

15 'a4': -0.500

16 'a5': +0.500

17 group A average correlations (a) : 0.200

18 group A standard deviation : 0.908

19 -----

20 group B correlations:

21 'b1': +0.500

22 'b2': +1.000

23 'b3': +0.000

24 'b4': +1.000

25 'b5': +0.500

26 group B average correlations (b) : 0.600

27 group B standard deviation : 0.418

28 -----

29 Average correlation : 0.400

30 Standard Deviation : 0.699

31 Unfairness |(a) - (b)| : 0.400

In this reversed Gale-Shapley pairing solution, it is indeed the group B that appears now
better served. Yet, it is necessary to notice now, besides the even more unbalanced group
average correlations, the lower global average correlation (+0.400 compared to +0.450)
coupled with both an even higher standard deviation (0.699 compared to 0.550) and a
higher unfairness score (0.400 versus 0.300).

It may however also happen that both Gale-Shapley matchings, as well as the overall
fairest one, are a same unique fairest pairing solution. This is for instance the case when
considering the following example of reciprocal lvA2 and lvB2 profilesPage 229, 49 .

1 >>> lvA2 = LinearVotingProfiles('lvA2')

2 >>> lvA2.showLinearBallots()

3 voters marginal

4 (weight) candidates rankings

5 a1(1): ['b1', 'b5', 'b2', 'b4', 'b3']

6 a2(1): ['b4', 'b3', 'b5', 'b2', 'b1']

7 a3(1): ['b3', 'b5', 'b1', 'b2', 'b4']

8 a4(1): ['b4', 'b2', 'b5', 'b3', 'b1']

9 a5(1): ['b5', 'b2', 'b3', 'b4', 'b1']

10 # voters: 5

11 >>> lvB2 = LinearVotingProfile('lvB2')

12 >>> lvB2.showLinearBallots()

13 voters marginal

14 (weight) candidates rankings
(continues on next page)

240

(continued from previous page)

15 b1(1): ['a1', 'a2', 'a5', 'a3', 'a4']

16 b2(1): ['a2', 'a5', 'a3', 'a4', 'a1']

17 b3(1): ['a3', 'a4', 'a1', 'a5', 'a2']

18 b4(1): ['a4', 'a1', 'a2', 'a3', 'a5']

19 b5(1): ['a2', 'a1', 'a5', 'a3', 'a4']

20 # voters: 5

21 >>> fp = FairestInterGroupPairing(lvA2,lvB2,StableMatchings=True)

22 >>> fp.showMatchingFairness()

23 *------------------------------*

24 ['a1', 'b1']

25 ['a2', 'b5']

26 ['a3', 'b3']

27 ['a4', 'b4']

28 ['a5', 'b2']

29 group A average correlations (a) : 0.700

30 group A standard deviation : 0.447

31 group B average correlations (b) : 0.900

32 group B standard deviation : 0.224

33 Average correlation : 0.800

34 Standard Deviation : 0.350

35 Unfairness |(a) - (b)| : 0.200

36 >>> print('Index of stable matchings:'. fp.stableIndex)

37 Index of stable matchings: [0]

In this case, the individual pairing preferences lead easily to the overall fairest pairing
(see above). Indeed, three couples out of 5, namely [a1, b1], [a3, b3] and [a4, b4], do
share their mutual first choices. For the remaining couples – [a2, b5] and [a5, b2]– the
fairest matching gives them their third and first, respectively their first and second choice.
Furthermore, their exists only one stable matching and it is actually the overall fairest
one. When setting the StableMatchings flag of the FairestInterGroupPairing class to
True, we get the stableIndex list with the actual index numbers of all stable maximal
matchings (see Lines 19 and 34-35).

But the contrary may also happen. Below we show individual pairing preferences –stored
in files lvA3.py and lvB3.py– for which the Gale-Shapley algorithm is not delivering a
satisfactory pairing solutionPage 229, 49.

1 >>> from votingProfiles import LinearVotingProfile

2 >>> lvA3 = LinearVotingProfile('lvA3')

3 >>> lvA3.showLinearBallots()

4 voters marginal

5 (weight) candidates rankings

6 a1(1): ['b5', 'b6', 'b4', 'b3', 'b1', 'b2']

7 a2(1): ['b6', 'b1', 'b4', 'b5', 'b3', 'b2']

8 a3(1): ['b6', 'b3', 'b4', 'b1', 'b5', 'b2']

9 a4(1): ['b3', 'b4', 'b2', 'b6', 'b5', 'b1']

10 a5(1): ['b3', 'b4', 'b5', 'b1', 'b6', 'b2']
(continues on next page)

241

(continued from previous page)

11 a6(1): ['b3', 'b5', 'b1', 'b6', 'b4', 'b2']

12 # voters: 6

13 >>> lvB3 = LinearVotingProfile('lvB3')

14 >>> lvB3.showLinearBallots()

15 voters marginal

16 (weight) candidates rankings

17 b1(1): ['a3', 'a4', 'a6', 'a1', 'a5', 'a2']

18 b2(1): ['a6', 'a4', 'a1', 'a3', 'a5', 'a2']

19 b3(1): ['a3', 'a2', 'a4', 'a1', 'a6', 'a5']

20 b4(1): ['a4', 'a2', 'a5', 'a6', 'a1', 'a3']

21 b5(1): ['a4', 'a2', 'a3', 'a6', 'a1', 'a5']

22 b6(1): ['a4', 'a3', 'a1', 'a5', 'a6', 'a2']

23 # voters: 6

The individual pairing preferences are very contradictory. For instance, Person’s a2 first
choice is b6 whereas Person b6 dislikes Person a2 most. Similar situation is given with
Persons a5 and b3.

In this pairing problem there does exist only one matching which is actually stable and
it is a very unfair pairing. Its fairness index is 140 (see Line 3-4 below).

1 >>> fp = FairestInterGroupPairing(lvA3,lvB3,

2 ... StableMatchings=True)

3 >>> fp.stableIndex

4 [140]

5 >>> g1 = fp.computeGaleShapleyMatching()

6 >>> fp.showMatchingFairness(g1,

7 ... WithIndividualCorrelations=True)

8 *------------------------------*

9 ['a1', 'b1']

10 ['a2', 'b4']

11 ['a3', 'b6']

12 ['a4', 'b3']

13 ['a5', 'b2']

14 ['a6', 'b5']

15 ------

16 group A correlations:

17 'a1': -0.600

18 'a2': +0.200

19 'a3': +1.000

20 'a4': +1.000

21 'a5': -1.000

22 'a6': +0.600

23 group A average correlation (a) : 0.200

24 group A standard deviation : 0.839

25 -----

26 group B correlations:
(continues on next page)

242

(continued from previous page)

27 'b1': -0.200

28 'b2': -0.600

29 'b3': +0.200

30 'b4': +0.600

31 'b5': -0.200

32 'b6': +0.600

33 group B average correlation (b) : 0.067

34 group B standard deviation : 0.484

35 -----

36 Average correlation : 0.133

37 Standard Deviation : 0.657

38 Unfairness |(a) - (b)| : 0.133

Indeed, both group correlations are very weak and show furthermore high standard devi-
ations. Five out of the twelve persons obtain a negative correlation with their respective
pairing preferences. Only two persons from group A –a3 and a4– get their first choice,
whereas Person a5 is matched with her least preferred partner (see Lines 19-21). In group
B, no apparent attention is put on choosing interesting partners (see Lines 27-32).

The fairest matching looks definitely more convincing.

1 >>> fp.showMatchingFairness(fp.matching,

2 ... WithIndividualCorrelations=True)

3 *------------------------------*

4 ['a1', 'b6']

5 ['a2', 'b5']

6 ['a3', 'b3']

7 ['a4', 'b2']

8 ['a5', 'b4']

9 ['a6', 'b1']

10 -----

11 group A correlations:

12 'a1': +0.600

13 'a2': -0.200

14 'a3': +0.600

15 'a4': +0.200

16 'a5': +0.600

17 'a6': +0.200

18 group A average correlation (a) : 0.333

19 group A standard deviation : 0.327

20 -----

21 group B correlations:

22 'b1': +0.200

23 'b2': +0.600

24 'b3': +1.000

25 'b4': +0.200

26 'b5': +0.600
(continues on next page)

243

(continued from previous page)

27 'b6': +0.200

28 group B average correlation (b) : 0.467

29 group B standard deviation : 0.327

30 -----

31 Average correlation : 0.400

32 Standard Deviation : 0.319

33 Unfairness |(a) - (b)| : 0.133

Despite the very contradictory individual pairing preferences and a same unfairness score,
only one person, namely a2, obtains here a choice in negative correlation with her pref-
erences (see Line 13). The group correlations and standard deviations are furthermore
very similar (lines 18 and 28).

The fairest solution is however far from being stable. With three couples of pairs that
are potentially unstable, the first and stable unique Gale-Shapley matching is with its
fairness index 140 indeed far behind many fairer pairing solutions (see below).

1 >>> fp.isStableMatching(fp.matching,Comments=True)

2 Unstable match: Pair(groupA='a4', groupB='b2')

3 Pair(groupA='a5', groupB='b4')

4 a4 b2 <-- b4

5 b4 a5 <-- a4

6 Unstable match: Pair(groupA='a2', groupB='b5')

7 Pair(groupA='a5', groupB='b4')

8 a2 b5 <-- b4

9 b4 a5 <-- a2

10 Unstable match: Pair(groupA='a3', groupB='b3')

11 Pair(groupA='a1', groupB='b6')

12 a3 b3 <-- b6

13 b6 a1 <-- a3

How likely is it to obtain such an unfair Gale-Shapley matching? With our Monte Carlo
simulation of 1000 random pairing problems of order 5, we may empirically check the
likely fairness index of the fairest of both Gale-Shapley solutions.

244

Fig. 4.22: Distribution of the fairness index of the fairest Gale-Shapley matching

In Fig. 4.22, we see that the fairest of both Gale-Shapley solutions will correspond to the
overall fairest pairing (index = 0) in about 36% out of the 1000 random cases. Yet, it is
indeed the complexity in 𝑂(𝑘2) of the Gale-Shapley algorithm that makes it an interesting
alternative to our brute force approach in complexity 𝑂(𝑘!).

It is worthwhile noticing furthermore that the number of stable matchings is in general
very small compared to the size of the huge set of potential maximal matchings as shown
in Fig. 4.23.

245

Fig. 4.23: Distribution of the number of stable matchings

In the simulation of 1000 random pairing problems of order 5, we observe indeed never
more than seven stable matchings and the expected number of stable matchings is between
one and two out of 120. It could therefore be opportune to limit our potential set of
maximal matchings –the decisions actions– to solely stable matchings, as is currently the
usual professional solving approach in pairing problems of this kind. Even if we would
very likely miss the overall fairest pairing solution.

Dropping the stability requirement

Dropping however the stability requirement opens a second way of reducing the actual
complexity of the fair pairing problem. This way goes by trying to enhance the fairness of
a Gale-Shapley matching via a hill-climbing heuristic where we swap partners in couples
of pairs that mostly increase the average ordinal correlation and decrease the gap between
the groups’ correlations.

With this strategy we may hence expect to likely reach one of the fairest possible matching
solutions. In a Monte Carlo simulation of 1000 random pairing problems of order 6 we
may indeed notice in Fig. 4.24 that we reach in a very limited number of swaps –less
than 2×𝑘– a fairness index less than [3] in nearly 95% of the cases. The weakest fairness
index found is 16.

246

Fig. 4.24: Distribution of the fairness index of enhanced Gale-Shapley solutions

In the following example of a pairing problem of order 6, we observe only one unique
stable matching with fairness index [12], in fact a very unfair Gale-Shapley matching
completely ignoring the individual pairing preferences of the persons in group B (see
Line 15 below).

1 >>> gs = FairestGaleShapleyMatching(lvA,lvB,

2 ... Comments=True)

3 Fairest Gale-Shapley matching

4 -----------------------------

5 ['a1', 'b3']

6 ['a2', 'b5']

7 ['a3', 'b4']

8 ['a4', 'b1']

9 ['a5', 'b6']

10 ['a6', 'b2']

11 -----

12 group A average correlation (a) : 0.867

13 group A standard deviation : 0.327

14 -----

15 group B average correlation (b) : 0.000

16 group B standard deviation : 0.704

17 -----

18 Average correlation : 0.433

19 Standard Deviation : 0.692

20 Unfairness |(a) - (b)| : 0.867

247

Taking this Gale-Shapley solution –gs.matching– as initial starting point, we try to swapp
partners in couple of pairs in order to improve the average ordinal correlation with all the
individual pairing preferences and to reduce the gap between both groups. The pairings
module provides the FairnessEnhancedInterGroupMatching class for this purpose.

1 >>> from pairings import \

2 ... FairnessEnhancedInterGroupMatching

3 >>> egs = FairnessEnhancedInterGroupMatching(

4 ... lvA,lvB,initialMatching=gs.matching)

5 >>> egs.iterations

6 4

7 >>> egs.showMatchingFairness(egs.matching)

8 Fairness enhanced matching

9 --------------------------

10 ['a1', 'b3']

11 ['a2', 'b2']

12 ['a3', 'b4']

13 ['a4', 'b6']

14 ['a5', 'b5']

15 ['a6', 'b1']

16 -----

17 group A average correlation (a) : 0.533

18 group A standard deviation : 0.468

19 -----

20 group B average correlation (b) : 0.533

21 group B standard deviation : 0.641

22 -----

23 Average correlation : 0.533

24 Standard Deviation : 0.535

25 Unfairness |(a) - (b)| : 0.000

26 >>> fp = FairestInterGroupPairing(lvA,lvB)

27 >>> fp.computeMatchingFairnessIndex(egs.matching)

28 0

With a slightly enhanced overall correlation (+0.533 versus +0.433), both groups obtain
after four swapping iterations the same group correlation of +0.533 (Unfairness score =
0.0, see Lines 17, 20 and 25 above). And, furthermore, the fairness enhancing procedure
attains the fairest possible pairing solution (see last Line).

Our hill-climbing fairness enhancing algorithm seams hence to be quite efficient. Consid-
ering that its complexity is about 𝑂(𝑘3), we are effectively able to solve pairing problems
of realistic orders.

Do we really need to start the fairness enhancing strategy from a previously computed
Gale-Shapley solution? No, we may start from any initial matching. This opens the way
for taking into account more realistic versions of the individual pairing preferences than
complete reciprocal linear voting profiles.

248

Relaxing the requirement for complete linear voting profiles

Partial individual pairing preferences

In the classical approach to the pairing decision problem, it is indeed required that
each person communicates a complete linearly ordered list of the potential partners.
It seams more adequate to ask for only partially ordered lists of potential part-
ners. With the PartialLinearBallots flag and the lengthProbability parameter the
RandomLinearVotingProfile class provides a random generator for such a kind of indi-
vidual pairing preferences (see Lines 5-6 below).

1 >>> from votingProfiles import RandomLinearVotingProfile

2 >>> vpA = RandomLinearVotingProfile(

3 ... numberOfVoters=7,numberOfCandidates=7,

4 ... votersIdPrefix='a',candidatesIdPrefix='b',

5 ... PartialLinearBallots=True,

6 ... lengthProbability=0.5,

7 ... seed=1)

8 >>> vpA.showLinearBallots()

9 voters marginal

10 (weight) candidates rankings

11 a1(1): ['b4', 'b7', 'b6', 'b3', 'b1']

12 a2(1): ['b7', 'b5', 'b2', 'b6']

13 a3(1): ['b1']

14 a4(1): ['b2', 'b3', 'b5']

15 a5(1): ['b2', 'b1', 'b4']

16 a6(1): ['b6', 'b7', 'b2', 'b3']

17 a7(1): ['b7', 'b6', 'b1', 'b3', 'b5']

18 # voters: 7

With length probability of 0.5, we obtain here for the seven persons in group A the partial
lists shown above. Person a3, for instance, only likes to be paired with Person b1, whereas
Person a4 indicates three preferred partners in decreasing order of preference (see Lines
13-14 above).

We may generate similar reciprocal partial linear voting profiles for the seven persons in
group B.

1 >>> vpB = RandomLinearVotingProfile(

2 ... numberOfVoters=7,numberOfCandidates=7,

3 ... votersIdPrefix='b',

4 ... candidatesIdPrefix='a',

5 ... PartialLinearBallots=True,

6 ... lengthProbability=0.5,

7 ... seed=2)

8 >>> vpB.showLinearBallots()

9 voters marginal

10 (weight) candidates rankings

11 b1(1): ['a3', 'a4']

(continues on next page)

249

(continued from previous page)

12 b2(1): ['a3', 'a4']

13 b3(1): ['a2', 'a6', 'a3', 'a1']

14 b4(1): ['a2', 'a6', 'a4']

15 b5(1): ['a2', 'a1', 'a5']

16 b6(1): ['a2', 'a7']

17 b7(1): ['a7', 'a2', 'a1', 'a4']

18 # voters: 7

This time, Persons b1 and b2 indicate only two preferred pairing partners, namely both
times Person a3 before Person a4 (see Lines 11-12 above).

Yet, it may be even more effective to only ask for reciprocal approvals and disapprovals
of potential pairing partners.

Reciprocal bipolar approval voting profiles

Such random bipolar approval voting profiles may be generated with the
RandomBipolarApprovalVotingProfile class (see below).

1 >>> from votingProfiles import \

2 ... RandomBipolarApprovalVotingProfile

3 >>> k = 5

4 >>> apA1 = RandomBipolarApprovalVotingProfile(

5 ... numberOfVoters=k,

6 ... numberOfCandidates=k,

7 ... votersIdPrefix='a',

8 ... candidatesIdPrefix='b',

9 ... approvalProbability=0.5,

10 ... disapprovalProbability=0.5,

11 ... seed=None)

12 >>> apA1.save('apA1')

13 >>> apA1.showBipolarApprovals()

14 Bipolar approval ballots

15 ------------------------

16 a1 :

17 Approvals : ['b1', 'b5']

18 Disapprovals: ['b2']

19 a2 :

20 Approvals : ['b2']

21 Disapprovals: ['b1', 'b3', 'b4']

22 a3 :

23 Approvals : []

24 Disapprovals: ['b3', 'b5']

25 a4 :

26 Approvals : ['b1', 'b5']

27 Disapprovals: ['b2', 'b3', 'b4']

28 a5 :

29 Approvals : ['b2', 'b3']
(continues on next page)

250

(continued from previous page)

30 Disapprovals: ['b1', 'b5']

31 Bipolar approval ballots

The approvalProbability and disapprovalProbability parameters determine the expected
number of approved, respectively disapproved, potential pairing partners (see Lines 9-10).
Person a1, for instance, approves two persons –b1 and b5– and disapproves only Person
b2 (see Lines 17-18). Whereas Person a3 does not approve anybody from group B, yet,
disapproves b3 and b5.

We may generate a similar random reciprocal bipolar approval voting profile for the
persons in group B.

1 >>> apB1 = RandomBipolarApprovalVotingProfile(

2 ... numberOfVoters=k,

3 ... numberOfCandidates=k,

4 ... votersIdPrefix='b',

5 ... candidatesIdPrefix='a',

6 ... approvalProbability=0.5,

7 ... disapprovalProbability=0.5,

8 ... seed=None)

9 >>> apB1.save('apB1')

10 >>> apB1.showBipolarApprovals()

11 Bipolar approval ballots

12 ------------------------

13 b1 :

14 Approvals : ['a2', 'a3']

15 Disapprovals: ['a1', 'a4', 'a5']

16 b2 :

17 Approvals : ['a1', 'a2']

18 Disapprovals: ['a4']

19 b3 :

20 Approvals : ['a5']

21 Disapprovals: ['a2', 'a3']

22 b4 :

23 Approvals : ['a2']

24 Disapprovals: ['a3', 'a5']

25 b5 :

26 Approvals : ['a4']

27 Disapprovals: ['a1']

This time, Person b1 approves two persons –a2 and a3– and disapproves three persons
–a1, a4, and a5– (see Lines 14-15 above).

251

Using Copeland scores for guiding the fairness enhancement

The partial linear voting profiles as well as the bipolar approval profiles determine
for each person in both groups only a partial order on their potential pairing part-
ners. In order to enhance the fairness of any given maximal matching, we must there-
fore replace the rank information of the complete linear voting profiles, as used in
the Gale-Shapley algorithm, with the Copeland ranking scores obtained from the par-
tial pairwise comparisons of potential partners. For this purpose we reuse again the
FairnessEnhancedInterGroupMatching class , but without providing any initial match-
ing (see belowPage 229, 49).

1 >>> from pairings import \

2 ... FairnessEnhancedInterGroupMatching

3 >>> from votingProfiles import BipolarApprovalVotingProfile

4 >>> apA1 = BipolarApprovalVotingProfile('apA1')

5 >>> apB1 = BipolarApprovalVotingProfile('apB1')

6 >>> fem = FairnessEnhancedInterGroupMatching(

7 ... apA1,apB1,initialMatching=None,

8 ... maxIterations=2*k,

9 ... Comments=False)

10 >>> fem

11 *------- InterGroupPairing instance description ------*

12 Instance class : FairnessEnhancedInterGroupMatching

13 Instance name : fairness-enhanced-matching

14 Group sizes : 5

15 Graph Order : 10

16 Graph size : 5

17 Partners swappings : 5

18 Attributes : ['runTimes', 'vpA', 'vpB',

19 'verticesKeysA', 'verticesKeysB', 'name',

20 'order', 'maxIterations', 'copelandScores',

21 'initialMatching', 'matching', 'iterations', 'history',

22 'maxCorr', 'stDev', 'groupAScores', 'groupBScores',

23 'vertices', 'valuationDomain', 'edges', 'size', 'gamma']

When no initial matching is given –initialMatching = None, which is the default setting–
two initial matchings –the left matching (ai, bi) and the right matching (ai, b-i) for i
= 1, . . . k– are used for starting the fairness enhancing procedure (see Line 7). The
best solution of both is eventually retained. When the initialMatching parameter is set
to ‘random’, a random shuffling –with given seed– of the persons in group B preceeds
the construction of the right and left initial matchings. By default, the computation
is limited to 2 × 𝑘 swappings of partners in order to master the potential occurrence
of cycling situations. This limit may be adjusted if necessary with the maxIterations
parameter (see Line 8). Such cycling swappings are furthermore controlled by the history
attribute (see Line 21). The fairness enhanced fem.matching solution determines in fact
a BipartiteGraph object (see last Line 23).

The actual pairing result obtained with the given bipolar approval ballots above is shown
with the showMatchingFairness() method (see the Listing below). The WithIndividu-

252

alCorrelations flag allows to print out the inidividual pairing preference correlations for
all persons in both groups (see Line 2).

1 >>> fem.showMatchingFairness(

2 ... WithIndividualCorrelations=True)

3 *------------------------------*

4 ['a1', 'b4']

5 ['a2', 'b2']

6 ['a3', 'b1']

7 ['a4', 'b5']

8 ['a5', 'b3']

9 -----

10 group A correlations:

11 'a1': -0.333

12 'a2': +1.000

13 'a3': +1.000

14 'a4': +1.000

15 'a5': +1.000

16 group A average correlation (a) : 0.733

17 group A standard deviation : 0.596

18 -----

19 group B correlations:

20 'b1': +1.000

21 'b2': +1.000

22 'b3': +1.000

23 'b4': +0.333

24 'b5': +1.000

25 group B average correlation (b) : 0.867

26 group B standard deviation : 0.298

27 -----

28 Average correlation : 0.800

29 Standard Deviation : 0.450

30 Unfairness |(a) - (b)| : 0.133

In group A and group B, all persons except a1 and b4 get an approved partner (see Lines
11 and 23). Yet, Persons a1 and b4 do not actually disapprove their respective match.
Hence, the resulting overall ordinal correlation is very high (+0.800, see Line 28) and
both groups show quite similar marginal correlation values (+0.733 versus +0.867, see
Lines 16 and 25). The fairness enhanced matching we obtain in this case corresponds
actually to the very fairest among all potential maximal matchings (see Lines 2-3 below).

1 >>> from pairings import FairestInterGroupPairing

2 >>> fp = FairestInterGroupPairing(apA1,apB1)

3 >>> fp.computeMatchingFairnessIndex(fem.matching)

4 0

Mind however that our fairness enhancing algorithm does not guarantee to end always
in the very fairest potential maximal matching. In Fig. 4.25 is shown the result of a
Monte Carlo simulation of 1000 random intergroup pairing problems of order 6 envolving

253

bipolar approval voting profiles with approval, resp. disapproval probalities of 50%, resp.
20%. The failure rate to obtain the fairest pairing solution amounts to 12.4% with an
average failure –optimal minus fairness enhanced average ordinal correlation– of -0.056
and a maximum failure of -0.292.

Fig. 4.25: Optimal versus fairness enhanced ordinal correlations

The proportion of failures depends evidently on the difficulty and the order of the pairing
problem. We may however enhance the success rate of the fairness enhancing heuristic by
choosing, like a Gale-Shapley stable in the case of linear voting profiles, a best determined
Copeland ranking scores based initial matching.

Starting the fairness enhancement from a best determined Copeland matching

The partner swapping strategy relies on the Copeland ranking scores of a potential pairing
candidate for all persons in bothe groups. These scores are precomputed and stored in the
copelandScores attribute of the FairnessEnhancedInterGroupMatching object. When
we add, for a pair {ai, bj} both the Copeland ranking score of partner bj from the
perspective of Person ai to the corresponding Copeland ranking score of partner ai from
the perspective of Person bj to two times the observed minimal Copeland ranking score,
we obtain a weakly determined complete bipartite graph object.

1 >>> from pairings import BestCopelandInterGroupMatching

2 >>> bcop = BestCopelandInterGroupMatching(apA1,apB1)

3 >>> bcop.showEdgesCharacteristicValues()

4 | 'b1' 'b2' 'b3' 'b4' 'b5'

(continues on next page)

254

(continued from previous page)

5 --------|---------------------------------------

6 'a1' | +0.56 +0.44 +0.50 +0.50 +0.44

7 'a2' | +0.56 +0.94 +0.19 +0.62 +0.62

8 'a3' | +0.81 +0.56 +0.12 +0.44 +0.31

9 'a4' | +0.56 +0.12 +0.44 +0.44 +0.94

10 'a5' | +0.19 +0.62 +0.94 +0.31 +0.31

11 Valuation domain: [-1.00;1.00]

12 >>> bcop.showPairing()

13 *------------------------------*

14 ['a1', 'b4']

15 ['a2', 'b2']

16 ['a3', 'b1']

17 ['a4', 'b5']

18 ['a5', 'b3']

By following a kind of ranked pairs rule, we may construct in this graph a best determined
bipartite maximal matching. The matches [a2, b2], [a4, b5] and [a5, b3] show the highest
Copeland scores (+0.94, see Lines 7,9-10), followed by [a3, b1] (+0.81 Line 6). For Person
a1, the best eventually available partner is b4 (+050, line 6).

We are lucky here with the given example of reciprocal bipolar approval voting pro-
files apA1 and apB1 as we recover immediately the fairest enhanced matching obtained
previously. The best determined Copeland matching is hence very opportune to take as
initial start for the fairness enhancing procedure as it may similarly drastically reduce the
potential number of fairness enhancing partner swappings (see Lines 3 and last below).

1 >>> fecop = FairnessEnhancedInterGroupMatching(

2 ... apA1,apB1,

3 ... initialMatching='bestCopeland',

4 ... Comments=False)

5 >>> fecop.showPairing()

6 *------------------------------*

7 ['a1', 'b4']

8 ['a2', 'b2']

9 ['a3', 'b1']

10 ['a4', 'b5']

11 ['a5', 'b3']

12 >>> fecop.Iterations

13 0

A Monte Carlo simulation with 1000 intergroup pairing problems of order 6 with ap-
proval and disapproval probabilities of 30% shows actually that both starting points
–initalMatching = None and initialMatching = ‘bestCopeland’– of the fairness enhanc-
ing heuristic may diverge positively and negatively in their respective best solutions.

255

Fig. 4.26: Influence of the starting point on the fainess enhanced pairing solution

Discuss Fig. 4.26 fem 78.18% success rate fecop 75.78% success rate

If we run the fairness enhancing heuristic from both the left and right initial matchings
as well as from the best determined Copeland matching and retain in fact the respective
fairest solution of these three, we obtain, as shown in Fig. 4.27, a success rate of 87.39%
for reaching the fairest possible pairing solution with an average failure of -0.036 and a
maximum failure of -0.150.

256

Fig. 4.27: Optimal versus best fairness enhanced pairing solution

For intergroup pairing problems of higher order, it appears however that the best de-
termined Copeland matching gives in general a more efficient initial starting point for
the fairness enhancing heuristic than both the left and right initial ones. In a Monte
Carlo simulation with 1000 random bipolar approval pairing problems of order 50 and
approval-disapproval probabilities of 20%, we obtain the results shown below.

Variables Mean Median S.D. Min Max

Correlation +0.886 +0.888 0.018 +0.850 +0.923
Unfairness 0.053 0.044 0.037 0.000 0.144
Run time (sec.) 1.901 1.895 0.029 1.868 2.142

The median overall average correlation with the individual pairing preferences amounts
to +0.886 with a maximum at +0.923. The Unfairness statistic indicates the absolute
difference between the average correlations obtained in group A versus group B.

In order to study the potential difference in quality and fairness of the pairing solutions
obtained by starting the fairness enhancing procedure from both the left and right inital
matching, from the best determined Copeland matching as well as from the fairest Gale-
Shapley we ran a Monte Carlo simulation with 1000 random intergroup pairing problems
of order 20 and where the individual pairing preferences were given with complete linear
voting profiles (see Fig. 4.28).

257

Fig. 4.28: Comparing pairing results from different fairnesss enhancing start points

If the average ordinal correlations obtained with the three starting matchings are quite
similar –means within +0.690 and +0.693– the differences between the average corre-
lations of group A and group B show a potential advantage for the left&right initial
matchings (mean unfairness: 0.065) versus the best Copeland (mean unfairness: 0.078)
and, even more versus the fairest Gale-Shapley matching (mean unfairness: 0.203, see
Fig. 4.28). The essential unfairness of stable Gale-Shapley matchings may in fact not
being corrected with our fairness enhancing procedure.

Back to Content Table (page 1)

4.5 On computing fair intragroup pairings

� The fair intragroup pairing problem (page 259)

� Generating random intragroup bipolar approval voting profiles (page 260)

� The set of potential ìntragroup pairing decisions (page 261)

� Computing the fairest intragroup pairing (page 262)

258

� Fairness enhancing of a given pairing decision (page 263)

The fair intragroup pairing problem

A very similar decision problem to the intergroup pairing one appears when, instead of
pairing two different set of persons, we are asked to pair an even-sized set of persons by
fairly balancing again the individual pairing preferences of each person.

Let us consider a set of four persons {p1, p2, p3, p4} to be paired. We may propose three
potential pairing decisions :

(1) p1 with p2 and p3 with p4,

(2) p1 with p3 and p2 with p4, and

(3) p1 with p4 and p2 with p3.

The individual pairing preferences, expressed under the format of bipolar approval ballots,
are shown below:

1 Bipolar approval ballots

2 ------------------------

3 p1 :

4 Approvals : ['p3', 'p4']

5 Disapprovals: ['p2']

6 p2 :

7 Approvals : ['p1']

8 Disapprovals: ['p3']

9 p3 :

10 Approvals : ['p1', 'p2', 'p4']

11 Disapprovals: []

12 p4 :

13 Approvals : ['p2']

14 Disapprovals: ['p1', 'p3']

Person p1, for instance, approves as potential partner both Persons p3 and p4, but
disapproves Person p2 (see Lines 3-5). Person p3 approves all potential partners, i.e.
disapproves none of them (see Lines 9-11).

Out of the three potential pairing decision, which is the one that most fairly balances the
given individual pairing preferences shown above? If we take decision (1), Person p1 will
be paired with a disapproved partner. If we take decision (3), Person p2 will be paired
with a disapproved partner. Only pairing decision (2) allocates no disapproved partner
to all the persons.

We will generalise this approach to larger groups of persons in a similar way as we do in
the intergroup pairing case.

259

Generating random intragroup bipolar approval voting profiles

Let us consider a group of six persons. Individual intragroup pairing preferences may be
randomly generated with the RandomBipolarApprovalVotingProfile class by setting
the IntraGroup parameter to True (see Line 6 below)

1 >>> from votingProfiles import\

2 ... RandomBipolarApprovalVotingProfile

3 >>> vpG = RandomBipolarApprovalVotingProfile(

4 ... numberOfVoters=6,

5 ... votersIdPrefix='p',

6 ... IntraGroup=True,

7 ... approvalProbability=0.5,

8 ... disapprovalProbability=0.2,

9 ... seed=1)

10 >>> vpG.showBipolarApprovals()

11 Bipolar approval ballots

12 ------------------------

13 p1 :

14 Approvals : ['p4', 'p5']

15 Disapprovals: []

16 p2 :

17 Approvals : ['p1']

18 Disapprovals: ['p5']

19 p3 :

20 Approvals : []

21 Disapprovals: ['p2']

22 p4 :

23 Approvals : ['p1', 'p2', 'p3']

24 Disapprovals: ['p5']

25 p5 :

26 Approvals : ['p1', 'p2', 'p3', 'p6']

27 Disapprovals: ['p4']

28 p6 :

29 Approvals : ['p1', 'p2', 'p3', 'p4']

30 Disapprovals: []

With an approval probability of 50% and a disapproval probability of 20% we obtain the
bipolar approvals shown above. Person p1 approves p4 and p5 and disapproves nobody,
whereas Person p2 approves p1 and disapproves p5 (see Lines 14-15 and 17-18). To
solve this intragroup pairing problem, we need to generate the set of potential matching
decisions.

260

The set of potential ìntragroup pairing decisions

In the intergroup pairing problem, the potential pairing decisions are given by the maxi-
mal independent sets of the line graph of the bipartite graph formed between two even-
sized groups of persons. Here the set of potential pairing decisions is given by the maximal
independents sets –the perfect matchings48– of the line graph of the complete graph ob-
tained from the given set of six persons (see below).

1 >>> persons = [p for p in vpG.voters]

2 >>> persons

3 ['p1', 'p2', 'p3', 'p4', 'p5', 'p6']

4 >>> from graphs import CompleteGraph, LineGraph

5 >>> cg = CompleteGraph(verticesKeys=persons)

6 >>> lcg = LineGraph(cg)

7 >>> lcg.computeMIS()

8 ... # result is stored into lcg.misset

9 >>> len(lcg.misset)

10 15

11 >>> lcg.misset[0]

12 frozenset({frozenset({'p5', 'p2'}),

13 frozenset({'p1', 'p6'}),

14 frozenset({'p3', 'p4'})})

In the intragroup case we observe 15 potential pairing decisions (see Line 10). For a set
of persons of size 2× 𝑘, the number of potential intragroup pairing decisions is actually
given by the double factorial of odd numbers47 .

1× 3× 5× ...× (2× 𝑘 − 1) = (2× 𝑘 − 1)!!

For the first pair we have indeed (2× 𝑘)− 1 partner choices, for the second pair we have
(2× 𝑘)− 3 partner choices, etc. This double factorial of odd numbers is far larger than
the simple k! number of potential pairing decisions in a corresponding intergroup pairing
problem of order k.

In order to find now the fairest pairing among this potentially huge set of intragroup
pairing decisions, we will reuse the same strategy as for the intergroup case. For each
potential pairing solution, we are computing the average ordinal correlation between
each potential pairing solution and the individual pairing preferences. The fairest pairing
decision is eventually determined by the highest average coupled with the lowest standard
deviation of the individual ordinal correlation indexes.

48 A perfect matching is a saturated matching, i.e. a maximal matching which leaves no vertice
unconnected.

47 Integer sequence http://oeis.org/A001147

261

http://oeis.org/A001147

Computing the fairest intragroup pairing

For a pairing problem of tiny order (k = 6) we may use the FairestIntraGroupPairing
class for computing in a brute force approach the fairest possible pairing solution :

1 >>> from pairings import FairestIntraGroupPairing

2 >>> fp = FairestIntraGroupPairing(vpG)

3 >>> fp.nbrOfMatchings

4 15

5 >>> fp.showMatchingFairness()

6 Matched pairs

7 {'p1', 'p4'}, {'p3', 'p5'}, {'p6', 'p2'}

8 ----

9 Individual correlations:

10 'p1': +1.000, 'p2': +0.000, 'p3': +1.000

11 'p4': +1.000, 'p5': +1.000, 'p6': +1.000

12 -----

13 Average correlation : +0.833

14 Unfairness (stdev) : 0.408

As expected, we observe with a problem of order 6 a set of 1 x 3 x 5 = 15 potential
pairings (see Line 4) and the fairest pairing solution –highest correlation (+0.833) with
given individual pairing preferences– is shown in Line 7 above. All persons, except p2
are paired with an approved partner and nobody is paired with a disapproved partner
(see Lines 10-11).

In the intergroup pairing case, an indicator of the actual fairness of a pairing solution is
given by the absolute difference between both group correlation values. In the intragroup
case here, an indicator of the fairness is given by the standard deviation of the individ-
ual correlations (see Line 14). The lower this standard deviation with a same overall
correlation result, the fairer appears to be in fact the pairing solution50 .

The fp object models in fact a generic Graph object whose edges correspond to the
fairest possible pairing solution (see Lines 11-12). We may hence produce in Fig. 4.29 a
drawing of the fairest pairing solution by using the standard exportGraphViz() method
for undirected graphs.

>>> fp.exportGraphViz('fairestIntraGroupPairing')

---- exporting a dot file for GraphViz tools ---------

Exporting to fairestIntraGroupPairing.dot

fdp -Tpng fairestIntraGroupPairing.dot -o fairestIntraGroupPairing.png

50 The inter- and intragroup pairing solvers solely maximise the overall correlation with the individ-
ual pairing preferences. It may happen that a slightly lesser overall correlation result comes with a
considerable lower standard deviation. Is this pairing solution than fairer than the one with a higher
overall correlation? Asked more generally: is a society with highest global welfare but uneven wealth
distribution a fairer society than the one showing less global welfare but with a considerable less uneven
wealth distribution?

262

Fig. 4.29: Fairest intragroup pairing solution

Unfortunately, this brute force approach to find the fairest possible pairing solution fails
in view of the explosive character of the double factorial of odd numbers. For a group of 20
persons, we observe indeed already more than 650 millions of potential pairing decisions.
Similar to the intergroup pairing case, we may use instead a kind of hill climbing heuristic
for computing a fair intragroup pairing solution.

Fairness enhancing of a given pairing decision

The FairnessEnhancedIntraGroupMatching class delivers such a solution. When no
initial matching is given (see Line 3 below), our hill climbing strategy will start, similar
to the intergroup pairing case, from two initial maximal matchings. The left one matches
Person pi with Person pi+1 for i in range 1 to 5 by step 3 (see Line 5-6) and the right
one matches Person pi with Person p-i for i in range 1 to 3 (see Line 8-9).

1 >>> from pairings import FairnessEnhancedIntraGroupMatching

2 >>> fem = FairnessEnhancedIntraGroupMatching(vpG,

3 ... initialMatching=None,Comments=True)

4 ===>>> Enhancing left initial matching

5 Initial left matching

6 [['p1', 'p2'], ['p3', 'p4'], ['p5', 'p6']]

7 Fairness enhanced left matching

8 [['p1', 'p4'], ['p3', 'p5'], ['p2', 'p6']] , correlation: 0.833

9 ===>>> Enhancing right initial matching

10 Initial right matching

11 [['p1', 'p6'], ['p3', 'p4'], ['p5', 'p2']]

12 Fairness enhanced right matching

13 [['p1', 'p4'], ['p3', 'p5'], ['p6', 'p2']] , correlation: 0.833

14 ===>>> Best fairness enhanced matching

15 Matched pairs

16 {'p1', 'p4'}, {'p2', 'p6'}, {'p3', 'p5'}

17 Average correlation: +0.833

The correlation enhancing search is similar to the one used for the intergroup heuristic.
For each couple of pairs [{pi, pj}, {pr, ps}] in the respective initial matchings we have in

263

the intragroup case in fact two partners swapping opportunities: (1) pj <-> ps or, (2)
pj <-> pr. For both ways, we assess the expected individual correlation gains with the
differences of the Copeland scores induced by the potential swappings. And we eventually
proceed with a swapping of highest expected average correlation gain among all couple
of pairs.

In the case of the previous bipolar approval intragroup voting profile vpG, both starting
points for the hill climbing heuristic give the same solution, in fact the fairest possible
pairing solution we have already obtained with the brute force algorithm in the preceding
Section (see above).

To illustrate why starting from two initial matchings may be useful, we solve below a
random intragroup pairing problem of order 20 where we assume an approval probability
of 30% and a disapproval probability of 20% (see Line 3 below).

1 >>> vpG1 = RandomBipolarApprovalVotingProfile(

2 ... numberOfVoters=20,votersIdPrefix='p',

3 ... IntraGroup=True,approvalProbability=0.3,

4 ... disapprovalProbability=0.2,seed=1)

5 >>> fem1 = FairnessEnhancedIntraGroupMatching(vpG1,

6 ... initialMatching=None,Comments=True)

7 ===>>> Enhancing left initial matching

8 Initial left matching

9 [['p01', 'p02'], ['p03', 'p04'], ['p05', 'p06'], ['p07', 'p08'], ['p09',

→˓ 'p10'],

10 ['p11', 'p12'], ['p13', 'p14'], ['p15', 'p16'], ['p17', 'p18'], ['p19',

→˓ 'p20']]

11 Fairness enhanced left matching

12 [['p01', 'p02'], ['p03', 'p04'], ['p05', 'p15'], ['p06', 'p11'], ['p09',

→˓ 'p17'],

13 ['p07', 'p12'], ['p13', 'p14'], ['p08', 'p16'], ['p20', 'p18'], ['p19',

→˓ 'p10']],

14 correlation: +0.785

15 ===>>> Enhancing right initial matching

16 Initialright matching

17 [['p01', 'p20'], ['p03', 'p18'], ['p05', 'p16'], ['p07', 'p14'], ['p09',

→˓ 'p12'],

18 ['p11', 'p10'], ['p13', 'p08'], ['p15', 'p06'], ['p17', 'p04'], ['p19',

→˓ 'p02']]

19 Fairness enhanced right matching

20 [['p01', 'p19'], ['p03', 'p02'], ['p05', 'p15'], ['p07', 'p18'], ['p09',

→˓ 'p17'],

21 ['p14', 'p13'], ['p10', 'p04'], ['p08', 'p12'], ['p20', 'p16'], ['p06',

→˓ 'p11']],

22 correlation: +0.851

23 ===>>> Best fairness enhanced matching

24 Matched pairs

25 {'p01', 'p19'}, {'p03', 'p02'}, {'p05', 'p15'}, {'p06', 'p11'},

(continues on next page)

264

(continued from previous page)

26 {'p07', 'p18'}, {'p08', 'p12'}, {'p09', 'p17'}, {'p10', 'p04'},

27 {'p14', 'p13'}, {'p20', 'p16'}

28 Average correlation: +0.851

The hill climbing from the left initial matching attains an average ordinal correlation of
+0.785, whereas the one starting from the right initial matching improves this result to
an average ordinal correlation of +0.851 (see Lines 14 and 22).

We may below inspect with the showMatchingFairness() method the individual ordinal
correlation indexes obtained this way.

1 >>> fem1.showMatchingFairness(WithIndividualCorrelations=True)

2 Matched pairs

3 {'p01', 'p19'}, {'p03', 'p02'}, {'p05', 'p15'},

4 {'p06', 'p11'}, {'p07', 'p18'}, {'p08', 'p12'},

5 {'p09', 'p17'}, {'p10', 'p04'}, {'p14', 'p13'},

6 {'p20', 'p16'}

7 ----

8 Individual correlations:

9 'p01': +1.000, 'p02': +1.000, 'p03': +1.000, 'p04': -0.143, 'p05': +1.

→˓000,

10 'p06': +1.000, 'p07': +0.500, 'p08': -0.333, 'p09': +1.000, 'p10': +1.

→˓000,

11 'p11': +1.000, 'p12': +1.000, 'p13': +1.000, 'p14': +1.000, 'p15': +1.

→˓000,

12 'p16': +1.000, 'p17': +1.000, 'p18': +1.000, 'p19': +1.000, 'p20': +1.

→˓000

13 -----

14 Average correlation : +0.851

15 Standard Deviation : 0.390

Only three persons –p04, p07 and p08– are not matched with a mutually approved
partner (see Lines 9-10 above). Yet, they are all three actually matched with a partner
they neither approve nor disapprove but who in return approves them as partner(see
Lines 10, 19 and 27 below).

1 >>> vpG1.showBipolarApprovals()

2 Bipolar approval ballots

3 ------------------------

4 ...

5 ...

6 p04 :

7 Approvals : ['p03', 'p12', 'p14', 'p19']

8 Disapprovals: ['p15', 'p18', 'p20']

9 p10 :

10 Approvals : ['p04', 'p17', 'p20']

11 Disapprovals: ['p01', 'p02', 'p05', 'p06', 'p07', 'p08',

(continues on next page)

265

(continued from previous page)

12 'p09', 'p11', 'p12', 'p16', 'p18']

13 ...

14 ...

15 p07 :

16 Approvals : ['p11']

17 Disapprovals: ['p01', 'p14', 'p19']

18 p12 :

19 Approvals : ['p06', 'p07', 'p08', 'p10', 'p16', 'p19']

20 Disapprovals: ['p11', 'p14']

21 ...

22 ...

23 p08 :

24 Approvals : ['p02', 'p05', 'p06', 'p14', 'p16', 'p19']

25 Disapprovals: ['p01', 'p13', 'p15']

26 p05 :

27 Approvals : ['p01', 'p04', 'p06', 'p07', 'p08', 'p11', 'p15', 'p16',

→˓'p18']

28 Disapprovals: ['p13', 'p19']

29 ...

30 ...

As the size of the potential maximal matchings with a pairing problem of order 20 exceeds
650 million instances, computing the overall fairest pairing solution becomes intractable
and we are unable to check if we reached or not this optimal pairing solution. A Monte
Carlo simulation with 1000 random intragroup pairing problem of order 8, applying an
approval probability of 50% and a disapproval probability of 20%, shows however in Fig.
4.30 the apparent operational efficiency of our hill climbing heuristic, at least for small
orders.

266

Fig. 4.30: Quality of fairness enhanced intragroup pairing solutions of order 8

Only 43 failures to reach the optimal average correlation were counted among the 1000
computations (4.3%) with a maximal difference in between of +0.250.

A similar simulation with more constrained random intragroup pairing problems of order
10, applying an approval and disapproval probability of only 30%, gives a failure rate of
19.1% to attain the optimal fairest pairing solution (see Fig. 4.31).

267

Fig. 4.31: Quality of fairness enhanced intragroup pairing solutions of order 10

Choosing, as in the intergroup pairing case, a more efficient initial matching for the
fairness enhancing procedure becomes essential. For this purpose we may rely again
on the best determined Copeland matching obtained with the pairwise Copeland scores
computed on the complete intragroup graph. When we add indeed, for a pair {pi, pj}
both the Copeland ranking score of partner pj from the perspective of Person pi to the
corresponding Copeland ranking score of partner pi from the perspective of Person pj
we may obtain a complete positively valued graph object. In this graph we can, with a
greedy ranked pairs rule, construct a best determined perfect matching which we may
use as efficient initial start for the fairness enhancing heuristic (see below).

1 >>> from pairings import BestCopelandIntraGroupMatching

2 >>> cop = BestCopelandIntraGroupMatching(vpG1)

3 >>> cop.showPairing(cop.matching)

4 Matched pairs

5 {'p02', 'p15'}, {'p04', 'p03'}, {'p08', 'p05'}, {'p09', 'p20'}

6 {'p11', 'p06'}, {'p12', 'p16'}, {'p14', 'p13'}, {'p17', 'p10'}

7 {'p18', 'p07'}, {'p19', 'p01'}

8 >>> fem2 = FairnessEnhancedIntraGroupMatching(vpG1,

9 ... initialMatching=cop.matching,Comments=True)

10 *---- Initial matching ----*

11 [['p02', 'p15'], ['p04', 'p03'], ['p08', 'p05'], ['p09', 'p20'],

12 ['p11', 'p06'], ['p12', 'p16'], ['p14', 'p13'], ['p17', 'p10'],

13 ['p18', 'p07'], ['p19', 'p01']]

14 Enhancing iteration : 1

15 Enhancing iteration : 2
(continues on next page)

268

(continued from previous page)

16 ===>>> Best fairness enhanced matching

17 Matched pairs

18 {'p02', 'p04'}, {'p08', 'p05'}, {'p09', 'p20'},

19 {'p11', 'p06'}, {'p12', 'p16'}, {'p14', 'p13'},

20 {'p15', 'p03'}, {'p17', 'p10'}, {'p18', 'p07'},

21 {'p19', 'p01'}

22 Average correlation: +0.872

23 Total run time: 0.193 sec.

With the best determined Copeland matching we actually reach in two partner swappings
a fairer pairing solution (+0.872) than the fairest one obtained with the default left
and right initial matchings (+0.851). This is however not always the case. In order
to check this issue, we ran a Monte Carlo experiment with 1000 random intragroup
pairing problems of order 30 where approval and disapproval probabilities were set to
20%. Summary statistics of the results are shown in the Table below.

Variables Mean Median S.D. Min Max

Correlation +0.823 +0.825 0.044 +0.682 +0.948
Std deviation 0.361 0.362 0.051 0.186 0.575
Iterations 23.69 23.000 3.818 14.00 36.00
Run time 3.990 3.910 0.636 2.340 6.930

These statistics were obtained by trying both the left and right initial matchings as well
as the best determined Copeland matching as starting point for the fairness enhancing
procedure and keeping eventually the best average correlation result. The overall ordinal
correlation hence obtained is convincingly high with a mean of +0.823, coupled with
a reasonable mean standard deviation of 0.361 over the 30 personal correlations. Run
times depend essentially on the number of enhancing iterations. On average, about 24
partner swappings were sufficient for computing all three variants in less than 4 seconds.
In slightly more than two third only of the random pairing problems (69.4%), starting the
fairness enhancing procedure from the best determined Copeland matching leads indeed
to the best overall ordinal correlation with the individual pairing preferences.

When enhancing thus the fairness solely by starting from the best determined Copeland
matching, we may solve with the FairnessEnhancedIntraGroupMatching solver in on
average about 30 seconds an intragroup pairing problem of order 100 with random bipolar
approval voting profiles and approval and disapproval probabilities of 10%. The average
overall ordinal correlation we may obtain is about +0.800.

Mind however that the higher the order of the pairing problem, the more likely gets the
fact that we actually may miss the overall fairest pairing solution. Eventually, a good
expertise in metaheuristics is needed in order to effectively solve big intragroup pairing
problems (Avis aux amateurs).

Back to Content Table (page 1)

269

4.6 On tree graphs and graph forests

� Generating random tree graphs (page 270)

� Recognizing tree graphs (page 273)

� Spanning trees and forests (page 275)

� Maximum determined spanning forests (page 277)

Generating random tree graphs

Using the RandomTree class, we may, for instance, generate a random tree graph with 9
vertices.

1 >>> from graphs import RandomTree

2 >>> t = RandomTree(order=9,seed=100)

3 >>> t

4 *------- Graph instance description ------*

5 Instance class : RandomTree

6 Instance name : randomTree

7 Graph Order : 9

8 Graph Size : 8

9 Valuation domain : [-1.00; 1.00]

10 Attributes : ['name', 'order', 'vertices', 'valuationDomain',

11 'edges', 'prueferCode', 'size', 'gamma']

12 *---- RandomTree specific data ----*

13 Prüfer code : ['v3', 'v8', 'v8', 'v3', 'v7', 'v6', 'v7']

14 >>> t.exportGraphViz('tutRandomTree')

15 *---- exporting a dot file for GraphViz tools ---------*

16 Exporting to tutRandomTree.dot

17 neato -Tpng tutRandomTree.dot -o tutRandomTree.png

270

Fig. 4.32: Random Tree instance of order 9

A tree graph of order n contains n-1 edges (see Line 8 and 9) and we may distinguish
vertices like v1, v2, v4, v5 or v9 of degree 1, called the leaves of the tree, and vertices
like v3, v6, v7 or v8 of degree 2 or more, called the nodes of the tree.

The structure of a tree of order 𝑛 > 2 is entirely characterised by a corresponding Prüfer
code -i.e. a list of vertices keys- of length n-2. See, for instance in Line 12 the code [‘v3’,
‘v8’, ‘v8’, ‘v3’, ‘v7’, ‘v6’, ‘v7’] corresponding to our sample tree graph t.

Each position of the code indicates the parent of the remaining leaf with the smallest
vertex label. Vertex v3 is thus the parent of v1 and we drop leaf v1, v8 is now the parent
of leaf v2 and we drop v2, vertex v8 is again the parent of leaf v4 and we drop v4, vertex
v3 is the parent of leaf v5 and we drop v5, v7 is now the parent of leaf v3 and we may
drop v3, v6 becomes the parent of leaf v8 and we drop v8, v7 becomes now the parent
of leaf v6 and we may drop v6. The two eventually remaining vertices, v7 and v9, give
the last link in the reconstructed tree (see [BAR-1991]).

It is as well possible to first, generate a random Prüfer code of length n-2 from a set of n
vertices and then, construct the corresponding tree of order n by reversing the procedure
illustrated above (see [BAR-1991]).

1 >>> verticesList = ['v1','v2','v3','v4','v5','v6','v7']

2 >>> n = len(verticesList)

3 >>> import random

(continues on next page)

271

(continued from previous page)

4 >>> random.seed(101)

5 >>> code = []

6 >>> for k in range(n-2):

7 ... code.append(random.choice(verticesList))

8

9 >>> print(code)

10 ['v5', 'v7', 'v2', 'v5', 'v3']

11 >>> t = RandomTree(prueferCode=['v5', 'v7', 'v2', 'v5', 'v3'])

12 >>> t

13 *------- Graph instance description ------*

14 Instance class : RandomTree

15 Instance name : randomTree

16 Graph Order : 7

17 Graph Size : 6

18 Valuation domain : [-1.00; 1.00]

19 Attributes : ['name', 'order', 'vertices', 'valuationDomain',

20 'edges', 'prueferCode', 'size', 'gamma']

21 *---- RandomTree specific data ----*

22 Prüfer code : ['v5', 'v7', 'v2', 'v5', 'v3']

23 >>> t.exportGraphViz('tutPruefTree')

24 *---- exporting a dot file for GraphViz tools ---------*

25 Exporting to tutPruefTree.dot

26 neato -Tpng tutPruefTree.dot -o tutPruefTree.png

Fig. 4.33: Tree instance from a random Prüfer code

Following from the bijection between a labelled tree and its Prüfer code, we actually
know that there exist 𝑛𝑛−2 different tree graphs with the same n vertices.

Given a genuine graph, how can we recognize that it is in fact a tree instance ?

272

Recognizing tree graphs

Given a graph g of order n and size s, the following 5 assertions A1, A2, A3, A4 and A5
are all equivalent (see [BAR-1991]):

� A1 : g is a tree;

� A2 : g is without (chordless) cycles and 𝑛 = 𝑠+ 1;

� A3 : g is connected and 𝑛 = 𝑠+ 1;

� A4 : Any two vertices of g are always connected by a unique path;

� A5 : g is connected and dropping any single edge will always disconnect g.

Assertion A3, for instance, gives a simple test for recognizing a tree graph. In case of
a lazy evaluation of the test in Line 3 below, it is opportune, from a computational
complexity perspective, to first, check the order and size of the graph, before checking its
potential connectedness.

1 >>> from graphs import RandomGraph

2 >>> g = RandomGraph(order=8,edgeProbability=0.3,seed=62)

3 >>> if g.order == (g.size +1) and g.isConnected():

4 ... print('The graph is a tree ?', True)

5 ... else:

6 ... print('The graph is a tree ?',False)

7

8 The graph is a tree ? True

The random graph of order 8 and edge probability 30%, generated with seed 62, is actually
a tree graph instance, as we may readily confirm from its graphviz drawing in Fig. 4.34
(see also the isTree() method for an implemented alternative test).

>>> g.exportGraphViz('test62')

---- exporting a dot file for GraphViz tools ---------

Exporting to test62.dot

fdp -Tpng test62.dot -o test62.png

273

Fig. 4.34: Recognizing a tree instance

Yet, we still have to recover its corresponding Prüfer code. Therefore, we may use the
tree2Pruefer() method.

>>> from graphs import TreeGraph

>>> g.__class__ = TreeGraph

>>> g.tree2Pruefer()

['v6', 'v1', 'v2', 'v1', 'v2', 'v5']

In Fig. 4.34 we also notice that vertex v2 is actually situated in the centre of the tree
with a neighborhood depth of 2. We may draw a correspondingly rooted and oriented
tree graph.

>>> g.computeGraphCentres()

{'v2': 2}

>>> g.exportOrientedTreeGraphViz(fileName='rootedTree',

... root='v2')

—- exporting a dot file for GraphViz tools ——— Exporting to
rootedTree.dot dot -Grankdir=TB -Tpng rootedTree.dot -o root-
edTree.png

274

Fig. 4.35: Drawing an oriented tree rooted at its centre

Let us now turn our attention toward a major application of tree graphs, namely spanning
trees and forests related to graph traversals.

Spanning trees and forests

With the RandomSpanningTree class we may generate, from a given connected graph g
instance, uniform random instances of a spanning tree by using Wilson’s algorithm
[WIL-1996]

Note: Wilson’s algorithm only works for connected graphs4.

1 >>> from graphs import *

2 >>> g = RandomGraph(order=9,edgeProbability=0.4,seed=100)

3 >>> spt = RandomSpanningTree(g)

4 >>> spt

5 *------- Graph instance description ------*

6 Instance class : RandomSpanningTree

7 Instance name : randomGraph_randomSpanningTree

8 Graph Order : 9

9 Graph Size : 8

10 Valuation domain : [-1.00; 1.00]

11 Attributes : ['name','vertices','order','valuationDomain',

12 'edges','size','gamma','dfs','date',

13 'dfsx','prueferCode']

14 *---- RandomTree specific data ----*

(continues on next page)

4 Wilson’s algorithm uses loop-erased random walks. See https://en.wikipedia.org/wiki/
Loop-erased_random_walk .

275

https://en.wikipedia.org/wiki/Loop-erased_random_walk
https://en.wikipedia.org/wiki/Loop-erased_random_walk

(continued from previous page)

15 Prüfer code : ['v7', 'v9', 'v5', 'v1', 'v8', 'v4', 'v9']

16 >>> spt.exportGraphViz(fileName='randomSpanningTree',

17 ... WithSpanningTree=True)

18 *---- exporting a dot file for GraphViz tools ---------*

19 Exporting to randomSpanningTree.dot

20 [['v1', 'v5', 'v6', 'v5', 'v1', 'v8', 'v9', 'v3', 'v9', 'v4',

21 'v7', 'v2', 'v7', 'v4', 'v9', 'v8', 'v1']]

22 neato -Tpng randomSpanningTree.dot -o randomSpanningTree.png

Fig. 4.36: Random spanning tree

More general, and in case of a not connected graph, we may generate with the
RandomSpanningForest class a not necessarily uniform random instance of a spanning
forest -one or more random tree graphs- generated from a random depth first search
of the graph components’ traversals.

1 >>> g = RandomGraph(order=15,edgeProbability=0.1,seed=140)

2 >>> g.computeComponents()

3 [{'v12', 'v01', 'v13'}, {'v02', 'v06'},

4 {'v08', 'v03', 'v07'}, {'v15', 'v11', 'v10', 'v04', 'v05'},

5 {'v09', 'v14'}]

6 >>> spf = RandomSpanningForest(g,seed=100)

7 >>> spf.exportGraphViz(fileName='spanningForest',WithSpanningTree=True)

8 *---- exporting a dot file for GraphViz tools ---------*

9 Exporting to spanningForest.dot

10 [['v03', 'v07', 'v08', 'v07', 'v03'],

11 ['v13', 'v12', 'v13', 'v01', 'v13'],

12 ['v02', 'v06', 'v02'],

13 ['v15', 'v11', 'v04', 'v11', 'v15', 'v10', 'v05', 'v10', 'v15'],

14 ['v09', 'v14', 'v09']]

15 neato -Tpng spanningForest.dot -o spanningForest.png

276

Fig. 4.37: Random spanning forest instance

Maximum determined spanning forests

In case of valued graphs supporting weighted edges, we may finally construct a most
determined spanning tree (or forest if not connected) using Kruskal ’s greedy minimum-
spanning-tree algorithm5 on the dual valuation of the graph [KRU-1956].

We consider, for instance, a randomly valued graph with five vertices and seven edges
bipolar-valued in [-1.0; 1.0].

1 >>> from graphs import *

2 >>> g = RandomValuationGraph(seed=2)

3 >>> print(g)

4 *------- Graph instance description ------*

5 Instance class : RandomValuationGraph

6 Instance name : randomGraph

7 Graph Order : 5

8 Graph Size : 7

9 Valuation domain : [-1.00; 1.00]

10 Attributes : ['name', 'order', 'vertices', 'valuationDomain',

11 'edges', 'size', 'gamma']

To inspect the edges’ actual weights, we first transform the graph into a corresponding
digraph (see Line 1 below) and use the showRelationTable() method (see Line 2 below)
for printing its symmetric adjacency matrix.

5 Kruskal ’s algorithm is a minimum-spanning-tree algorithm which finds an edge of the least possi-
ble weight that connects any two trees in the forest. See https://en.wikipedia.org/wiki/Kruskal%27s_
algorithm .

277

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

1 >>> dg = g.graph2Digraph()

2 >>> dg.showRelationTable()

3 * ---- Relation Table -----

4 S | 'v1' 'v2' 'v3' 'v4' 'v5'

5 ------|---

6 'v1' | 0.00 0.91 0.90 -0.89 -0.83

7 'v2' | 0.91 0.00 0.67 0.47 0.34

8 'v3' | 0.90 0.67 0.00 -0.38 0.21

9 'v4' | -0.89 0.47 -0.38 0.00 0.21

10 'v5' | -0.83 0.34 0.21 0.21 0.00

11 Valuation domain: [-1.00;1.00]

To compute the most determined spanning tree or forest, we may use the
BestDeterminedSpanningForest class constructor.

1 >>> mt = BestDeterminedSpanningForest(g)

2 >>> print(mt)

3 *------- Graph instance description ------*

4 Instance class : BestDeterminedSpanningForest

5 Instance name : randomGraph_randomSpanningForest

6 Graph Order : 5

7 Graph Size : 4

8 Valuation domain : [-1.00; 1.00]

9 Attributes : ['name','vertices','order','valuationDomain',

10 'edges','size','gamma','dfs',

11 'date', 'averageTreeDetermination']

12 *---- best determined spanning tree specific data ----*

13 Depth first search path(s) :

14 [['v1', 'v2', 'v4', 'v2', 'v5', 'v2', 'v1', 'v3', 'v1']]

15 Average determination(s) : [Decimal('0.655')]

The given graph is connected and, hence, admits a single spanning tree (see Fig. 4.38) of
maximum mean determination = (0.47 + 0.91 + 0.90 + 0.34)/4 = 0.655 (see Lines
9, 6 and 10 in the relation table above).

1 >>> mt.exportGraphViz(fileName='bestDeterminedspanningTree',

2 ... WithSpanningTree=True)

3 *---- exporting a dot file for GraphViz tools ---------*

4 Exporting to spanningTree.dot

5 [['v4', 'v2', 'v1', 'v3', 'v1', 'v2', 'v5', 'v2', 'v4']]

6 neato -Tpng bestDeterminedSpanningTree.dot -o␣

→˓bestDeterminedSpanningTree.png

278

Fig. 4.38: Best determined spanning tree

One may easily verify that all other potential spanning trees, including instead the edges
{v3, v5} and/or {v4, v5} - will show a lower average determination.

Back to Content Table (page 1)

5 Appendices

References

[CPSTAT-L5] Bisdorff R. (2017) “Simulating from abitrary empirical random distribu-
tions”. MICS Computational Statistics course, Lecture 5. FSTC/ILIAS Uni-
versity of Luxembourg, Winter Semester 2017 (see http://hdl.handle.net/
10993/37933).

[BIS-2016] Bisdorff R. (2016). “Computing linear rankings from trillions of pairwise
outranking situations”. In Proceedings of DA2PL’2016 From Multiple Cri-
teria Decision Aid to Preference Learning, R. Busa-Fekete, E. Hüller-
meier, V. Mousseau and K. Pfannschmidt (Eds.), University of Pader-
born (Germany), Nov. 7-8 2016: 1-6 (downloadable PDF file 451.4 kB
(http://hdl.handle.net/10993/28613))

[BIS-2015] Bisdorff R. (2015). “The EURO 2004 Best Poster Award: Choosing the
Best Poster in a Scientific Conference”. Chapter 5 in R. Bisdorff, L.
Dias, P. Meyer, V. Mousseau, and M. Pirlot (Eds.), Evaluation and
Decision Models with Multiple Criteria: Case Studies. Springer-Verlag
Berlin Heidelberg, International Handbooks on Information Systems, DOI
10.1007/978-3-662-46816-6_1, pp. 117-166 (downloadable PDF file 754.7
kB (http://hdl.handle.net/10993/23714)).

279

http://hdl.handle.net/10993/37933
http://hdl.handle.net/10993/37933
http://hdl.handle.net/10993/28613
http://hdl.handle.net/10993/23714
http://hdl.handle.net/10993/23714

[ADT-L2] Bisdorff R. (2020) “Who wins the election?” MICS Algorithmic Decision
Theory course, Lecture 2. FSTC/ILIAS University of Luxembourg, Summer
Semester 2020 (see http://hdl.handle.net/10993/37933 and downloadable
PDF file 199.5 kB).

[ADT-L7] Bisdorff R.(2014) “Best multiple criteria choice: the Rubis outrank-
ing method”. MICS Algorithmic Decision Theory course, Lecture 7.
FSTC/ILIAS University of Luxembourg, Summer Semester 2014 (see http:
//hdl.handle.net/10993/37933 and downloadable PDF file 309.6 kB).

[BIS-2013] Bisdorff R. (2013) “On Polarizing Outranking Relations with Large
Performance Differences” Journal of Multi-Criteria Decision Anal-
ysis (Wiley) 20:3-12 (downloadable preprint PDF file 403.5 Kb
(http://hdl.handle.net/10993/245)).

[BIS-2012] Bisdorff R. (2012). “On measuring and testing the ordinal correlation
between bipolar outranking relations”. In Proceedings of DA2PL’2012
From Multiple Criteria Decision Aid to Preference Learning, University
of Mons 91-100. (downloadable preliminary version PDF file 408.5 kB
(http://hdl.handle.net/10993/23909)).

[DIA-2010] Dias L.C. and Lamboray C. (2010). “Extensions of the prudence principle
to exploit a valued outranking relation”. European Journal of Operational
Research Volume 201 Number 3 pp. 828-837.

[LAM-2009] Lamboray C. (2009) “A prudent characterization of the Ranked Pairs Rule”.
Social Choice and Welfare 32 pp. 129-155.

[BIS-2008] Bisdorff R., Meyer P. and Roubens M. (2008) “RUBIS: a bipolar-valued out-
ranking method for the choice problem”. 4OR, A Quarterly Journal of Oper-
ations Research Springer-Verlag, Volume 6, Number 2 pp. 143-165. (Online)
Electronic version: DOI: 10.1007/s10288-007-0045-5 (downloadable prelim-
inary version PDF file 271.5Kb (http://hdl.handle.net/10993/23716)).

[ISOMIS-08] Bisdorff R. and Marichal J.-L. (2008). “Counting non-isomorphic
maximal independent sets of the n-cycle graph”. Journal of In-
teger Sequences, Vol. 11 Article 08.5.7 (openly accessible here
(https://cs.uwaterloo.ca/journals/JIS/VOL11/Marichal/marichal.html)).

[NR3-2007] Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P. (2007)
“Single-Pass Estimation of Arbitrary Quantiles” Section 5.8.2 in Numerical
Recipes: The Art of Scientific Computing 3rd Ed., Cambridge University
Press, pp 435-438.

[CHAM-2006] Chambers J.M., James D.A., Lambert D. and Vander Wiel S.
(2006) “Monitoring Networked Applications with Incremental Quantile
Estimation”. Statistical Science, Vol. 21, No.4, pp.463-475. DOI: 10
12140/088342306000000583.

[BIS-2006a] Bisdorff R., Pirlot M. and Roubens M. (2006). “Choices and ker-
nels from bipolar valued digraphs”. European Journal of Opera-
tional Research, 175 (2006) 155-170. (Online) Electronic version:

280

http://hdl.handle.net/10993/37933
http://hdl.handle.net/10993/37933
http://hdl.handle.net/10993/37933
http://hdl.handle.net/10993/245
http://hdl.handle.net/10993/23909
http://hdl.handle.net/10993/23716
https://cs.uwaterloo.ca/journals/JIS/VOL11/Marichal/marichal.html

DOI:10.1016/j.ejor.2005.05.004 (downloadable preliminary version PDF file
257.3Kb (http://hdl.handle.net/10993/23720)).

[BIS-2006b] Bisdorff R. (2006). “On enumerating the kernels in a bipolar-valued di-
graph”. Annales du Lamsade 6, Octobre 2006, pp. 1 - 38. Université
Paris-Dauphine. ISSN 1762-455X (downloadable version PDF file 532.2 Kb
(http://hdl.handle.net/10993/38741)).

[BIS-2004a] Bisdorff R. (2004) “On a natural fuzzification of Boolean logic”. In Erich
Peter Klement and Endre Pap (editors), Proceedings of the 25th Linz Sem-
inar on Fuzzy Set Theory, Mathematics of Fuzzy Systems. Bildungszentrum
St. Magdalena, Linz (Austria), February 2004. pp. 20-26 (PDF file (133.4
Kb) for downloading (http://hdl.handle.net/10993/38740))

[BIS-2004b] Bisdorff R. (2004) “Concordant Outranking with multiple criteria of ordinal
significance”. 4OR, Quarterly Journal of the Belgian, French and Italian
Operations Research Societies, Springer-Verlag, Issue: Volume 2, Number
4, December 2004, Pages: 293 - 308. [ISSN: 1619-4500 (Paper) 1614-2411
(Online)] Electronic version: DOI: 10.1007/s10288-004-0053-7 (PDF file
137.1Kb for downloading (http://hdl.handle.net/10993/23721))

[BER-1963] Berge C (1963) Perfect graphs. Six Papers on Graph Theory. Calcutta:
Indian Statistical Institute pp 1–21 333

[CHU-2006] Chudnovsky M, Robertson N, Seymour P, Robin T (2006) The strong per-
fect graph theorem. Annals of Mathematics 164(1):51–229 333

[GOL-2004] Golumbic M.Ch. (2004), Agorithmic Graph Theory and Perfect Graphs 2nd
Ed., Annals of Discrete Mathematics 57, Elsevier.

[FMCAA] Häggström O. (2002) Finite Markov Chains and Algorithmic Applications.
Cambridge University Press.

[BIS-2000] Bisdorff R. (2000), “Logical foundation of fuzzy preferential systems with
application to the ELECTRE decision aid methods”, Computers and Op-
erations Research, 27:673-687 (downloadable version PDF file 159.1Kb
(http://hdl.handle.net/10993/23724)).

[BIS-1999] Bisdorff R. (1999), “Bipolar ranking from pairwise fuzzy outrankings”, JOR-
BEL Belgian Journal of Operations Research, Statistics and Computer
Science, Vol. 37 (4) 97 379-387. (PDF file (351.7 Kb) for downloading
(http://hdl.handle.net/10993/38738))

[WIL-1996] Wilson D.B. (1996), Generating random spanning trees more quickly than
the cover time, Proceedings of the Twenty-eighth Annual ACM Symposium
on the Theory of Computing (Philadelphia, PA, 1996), 296-303, ACM, New
York, 1996.

[BAR-1991] Barthélemy J.-P. and Guenoche A. (1991), Trees and Proximities Repre-
sentations, Wiley, ISBN: 978-0471922636.

[KRU-1956] Kruskal J.B. (1956), On the shortest spanning subtree of a graph and the
traveling salesman problem, Proceedings of the American Mathematical So-
ciety. 7: 48–50.

281

http://hdl.handle.net/10993/23720
http://hdl.handle.net/10993/23720
http://hdl.handle.net/10993/38741
http://hdl.handle.net/10993/38740
http://hdl.handle.net/10993/23721
http://hdl.handle.net/10993/23721
http://hdl.handle.net/10993/23724
http://hdl.handle.net/10993/38738

[GAL-1962] Gale D. and Shapley L. S. (1962). “College Admissions and the Sta-
bility of Marriage”. American Mathematical Monthly. 69 (1): 9–14.
doi:10.2307/2312726. JSTOR 2312726. Archived from the original on 2017-
09-25. Retrieved 2019-11-20

282

	Working with digraphs and outranking digraphs
	Working with the Digraph3 software resources
	Purpose
	Downloading of the Digraph3 resources
	Starting a Python3 terminal session
	Digraph object structure
	Permanent storage
	Inspecting a Digraph object
	Special Digraph instances

	Working with the digraphs module
	Random digraphs
	Graphviz drawings
	Asymmetric and symmetric parts
	Border and inner parts
	Fusion by epistemic disjunction
	Dual, converse and codual digraphs
	Symmetric and transitive closures
	Strong components
	CSV storage
	Complete, empty and indeterminate digraphs

	Working with the outrankingDigraphs module
	Outranking digraph model
	The bipolar-valued outranking digraph
	Pairwise comparisons
	Recoding the digraph valuation
	The strict outranking digraph

	Evaluation and decision methods and tools
	Generating random performance tableaux with the randPerfTabs module
	Introduction
	Random standard performance tableaux
	Random Cost-Benefit performance tableaux
	Random three objectives performance tableaux
	Random academic performance tableaux
	Random linearly ranked performance tableaux

	How to create a new performance tableau instance
	Editing a template file
	Editing the decision alternatives
	Editing the decision objectives
	Editing the family of performance criteria
	Editing the performance table
	Inspecting the template outranking relation
	Ranking the template peformance tableau

	Computing the winner of an election with the votingProfiles module
	Linear voting profiles
	Computing the winner
	The Condorcet winner
	Cyclic social preferences
	On generating realistic random linear voting profiles

	Ranking with multiple incommensurable criteria
	The ranking problem
	The Copeland ranking
	The NetFlows ranking
	Kemeny rankings
	Slater rankings
	Kohler’s ranking-by-choosing rule
	Tideman’s ranked-pairs rule

	Computing a first choice recommendation
	What site to choose ?
	The performance tableau
	The outranking digraph
	The Rubis best choice recommendation
	Computing strict best choice recommendations
	Weakly ordering the outranking digraph

	Rating into relative performance quantiles
	Performance quantile sorting on a single criterion
	Rating-by-sorting into relative multicriteria performance quantiles
	Rating-by-ranking with relative quantile limits

	Rating with learned performance quantile norms
	Introduction
	Incremental learning of historical performance quantiles
	Rating-by-ranking new performances with quantile norms

	Sparse bipolar-valued outranking digraphs
	The sparse pre-ranked outranking digraph model
	Ranking pre-ranked sparse outranking digraphs

	HPC ranking with big outranking digraphs
	C-compiled Python modules
	Big Data performance tableaux
	C-implemented integer-valued outranking digraphs
	The sparse outranking digraph implementation
	Ranking big sets of decision alternatives
	HPC quantiles ranking records

	Evaluation and decision case studies
	Alice’s best choice: A selection case study
	The decision problem
	The performance tableau
	Building a best choice recommendation
	Robustness analysis

	The best academic Computer Science Depts: a ranking case study
	The THE performance tableau
	Ranking with multiple incommensurable criteria of ordinal significance
	How to judge the quality of a ranking result?

	The best students, where do they study? A rating case study
	The performance tableau
	Rating-by-ranking with lower-closed quantile limits
	Inspecting the bipolar-valued outranking digraph
	Rating by quantiles sorting
	To conclude

	Exercises
	Who will receive the best student award? (§)
	How to fairly rank movies (§)
	What is your best choice recommendation? (§)
	What is the best public policy? (§§)
	A fair diploma validation decision (§§§)

	Moving on to undirected graphs
	Working with the graphs module
	Structure of a Graph object
	q-coloring of a graph
	MIS and clique enumeration
	Line graphs and maximal matchings
	Grids and the Ising model
	Simulating Metropolis random walks

	Computing the non isomorphic MISs of the 12-cycle graph
	Introduction
	Computing the maximal independent sets (MISs)
	Computing the automorphism group
	Computing the isomorphic MISs

	About split, interval and permutation graphs
	A multiply perfect graph
	Who is the liar ?
	Generating permutation graphs
	Recognizing permutation graphs

	On computing fair intergroup pairings
	The fair intergroup pairing problem
	Generating the set of potential maximal matchings
	Measuring the fitness of a matching from a personal perspective
	Computing the fairest intergroup pairing
	Fair versus stable pairings
	Relaxing the requirement for complete linear voting profiles
	Using Copeland scores for guiding the fairness enhancement
	Starting the fairness enhancement from a best determined Copeland matching

	On computing fair intragroup pairings
	The fair intragroup pairing problem
	Generating random intragroup bipolar approval voting profiles
	The set of potential ìntragroup pairing decisions
	Computing the fairest intragroup pairing
	Fairness enhancing of a given pairing decision

	On tree graphs and graph forests
	Generating random tree graphs
	Recognizing tree graphs
	Spanning trees and forests
	Maximum determined spanning forests

	Appendices
	References

