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Content of Lecture 3

1. Simulating uniform random variables
Probability distributions in R-core
Simulating a continuous uniform distribution
The spectral test for RNGs

2. Simulating non uniform random variables by inverse transform
Simulating a discrete probability distribution
The continuous inverse transform
Standard exponential law based generators

3. The Gaussian random variable
The “normal” probability distribution
Important properties of the Gaussian
Simulating Gaussian random variables
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Probability distributions in R-core
Distribution R-name Parameters Default Values
Beta beta shape1,shape2
Binomial binom size,prob
Cauchy cauchy location, scale 0,1
Chi-square chisq df
Exponential exp 1/mean
F f df1, df2
Gamma gamma shape, 1/scale NA, 1
Geometric geom prob
Hypergeometric hyper m,n,k
Log-normal lnorm mean,sd 0,1
Logistics logis location,scale 0,1
Gaussian normal mean, sd 0,1
Poisson pois lambda
Student t df
Uniform unif min,max 0,1
Weibull weibull shape

Each R-name may be prefixed with d , p, q, and r , to deliver the corresponding density

(df ), cumulative probability distribution (cdf ), the quantiles fct (cdf −1), and a

random instance generator, like runif for instance.
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Graphing probability distributions

Checking, for instance, the shape of the density function (df )
and/or of the cumulative distribution function (cdf ) of a beta(2,2)
law may be done with the following R commands :

> x = seq(0,1, length=100)

> d = dbeta(x,2,2) # beta df

> p = pbeta(x,2,2) # beta cdf

> plot(x,d,type="n")

> lines(x,d,col="blue")

> lines(x,p,col="red")

> abline(h=0.5,lty="dotted"

> abline(v=0.5,lty="dotted"
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Graphing probability distributions

Exercise (Centrally peaked distributions)

Construct a graph in R on the real interval [−5, 5] which
superposes the standard normal distribution N (0, 1), the student
t-distributions t(6, 0, 1) and t(4, 0, 1), the Cauchy distribution
C(0, 1) and the logistic distribution L(0, 1).

Exercise (Distributions on the positive half-line)

Construct a graph in R on the half-line [0, 10] which superposes
the exponential distribution Exp(0.5), the Fischer F -distribution
F (10, 4), the Lognormal distribution LN (1, 1), the Gamma
distribution Γ(3, 1), and the Chi-Square Distribution χ2(df = 5).
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Generating uniform simulation data with R

The basic uniform generator in R is runif with required number
nSim of values to be generated. The range of a uniform random
variable X ∼ U(2, 5) may be indicated with the min (default = 0)
and max (default = 1) parameters like this :

> nSim = 10^4

> set.seed(1) # initializing the generator

> X = runif(nSim, min=2, max=5)

The commands will produce a vector X containing 104 values
generated from a uniform law of range 2 to 5.
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Checking the quality of the uniform generator

Checking the quality of a uniform random sequence X may be
done with a histogram, a plot of the pair (X [i ],X [i + 1]), and the
estimated autocorrelation function acf (X ). Try the following R
commands :

> par(mfrow=c(1,3))

> hist(X)

> X1 = X[-nSim] # skip 1rst

> X2 = X[-1] # skip last

> plot(X1,X2,pch=".") # scatter

> acf(X)
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The spectral test for RNGs

An especially important way to check the quality of a uniform random number
generator is given by the spectral test. If we have a sequence 〈Un〉 of period m, the
basic idea is to analyse the positions of the set of all m points
{(Un,Un+1, ...,Un+t−1)} for 0 ≥ n ≥ m in t-dimensional space. For instance, consider
the following t = 2 and t = 3 tests for a linear congruational generator :

> nSim = 256

> X=rep(0,nSim)

> for (i in 2:nSsim){

> X[i] = (137*X[i-1]+187)%%256 }

> plot(X[-1],X[-nSim],col="blue",\

type="p",pch="x",lwd=2)
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The spectral test for RNGs – continue

With the same LCGRNG we obtain in a three-dimensional spectral test the follwoing
result :

> nSim = 256

> X=rep(0,nSim)

> for (i in 2:nSim){

> X[i] = (137*X[i-1]+187)%%256 }

> X1 = X[3:256]

> X2 = X[2:255]

> X3 = X[1:254]

> library("lattice")

> cloud(X3 ~ X1 + X2,type="p")

Exercise
Compare with the results of the spectral test for the default Mersenne Twister
generator.
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Discrete inverse transform

To generate X ∼ P(θ) where P(θ) is a discrete random variable
defined on integer values 0, 1, 2, ..., θ, we store once for all the
discrete cumulated probabilities : p0 = P(X 6 0), ...,
pθ = P(X 6 θ). With U ∼ U(0, 1), one may take : X = k if
pk−1 < U < pk for k = 1, ..., θ.
Here the R code to generate a variable X ∼ B(10, 0.3) :

> P = pbinom(0:10,10,.3)

> X = rep(0,nSim)

> for (i in 1:nSim){

+ u = runif(1)

+ X[i] = sum(P < u) }

> freq = hist(X,breaks=seq(0,11),

+ right=F)

> attach(freq)

> plot(breaks[-11],density,"h"

+ main="B(10,.3) simulation")
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Discrete empirical random laws

Exercise
You are requested to draw a sample of 1000 random integers in the
range [0; 9] along the following empirical probability distribution :

0 1 2 3 4
0.0478 0.3349 0.2392 0.1435 0.0957

5 6 7 8 9
0.0670 0.0478 0.0096 0.0096 0.048

1. Write a Python program for generating this sample and store
the resulting random sequence in a csv file,

2. Generate this sample with R,

3. Compare both sample distributions with the empirical one.
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The continuous inverse transform

If random variable X has density function fX and cumulative
density function (cdf) FX , we have the relation :

FX (x) =

∫ x

−∞
fX (t)dt

If we set U := FX ∼ U(0, 1) and assume that the cdf FX has an
analytical inverse F−1

X then :

P(U 6 u) = P
(
FX 6 FX (x)

)

= P
[
F−1
X (FX ) 6 F−1

X (FX (x))
]

= P(X 6 x)

Now, if F−1
X (u) := inf{ x | FX (x) > u} then F−1

X (U) ∼ X .
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The inverse transform of the standard exponential
probability law

Suppose X ∼ λe−λx with λ = 1. Then FX = 1− e−x . Solving for
x in u = 1− e−x gives x = − log(1− u). Therefore, if
U ∼ U(0, 1), then 1− U ∼ U and

X = − log U ∼ e−x

Try the following R commands :

> nSim = 10^4

> U = runif(nSim)

> X = -log(U) # transform

> Y = rexp(nSim) # R builtin

> par(mfrow=c(1,2))

> hist(X,freq=F,

+ main="Exp from Uniform")

> hist(Y,freq=F,

+ main="Exp from R")
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Standard exponential law based generators
Suppose we have a generator for the standard exponential law
based on uniform random number generator.
If variables Xi ’s are independent e−x distributed variables, then the
Chi-square, Gamma and Beta distributions can be simulated as
follows :

Y = 2
n∑

i=1

Xi ∼ χ2(df = 2n)

Y = β
a∑

i=1

Xi ∼ G(a, β)

Y =

∑a
i=1 Xi∑a+b
i=1 Xi

∼ B(a, b)
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The normal probability distribution

• A very special role in simulations is played by the “normal” or
“normally” distributed random variables.

• A random variable X ∈ R is “normally” distributed, or
Gaussian, with mean E (X ) = µ and standrad deviation√

V (X ) = σ :
X ∼ N (µ, σ),

when

P(X ≤ x) =
1

σ
√

2π

∫ x

−∞
e
− 1

2

[
(t−µ)

σ

]2

dt.

• A standard Gaussian variable is a Gaussian variable, denoted
Z , with zero mean (µ = 0) and unit standard deviation
(σ = 1).
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Quantiles and tolerance intervals of a Gaussian variable

µ± 1.96σ or z ± 1.96 gathers 95% of the observations

µ± 2.58σ or z ± 2.58 gathers 99% of the observations

µ± 3.29σ or z ± 3.29 gathers 99.9% of the observations

µ± 1σ or z ± 1 gathers 68.3% of the observations

µ± 2σ or z ± 2 gathers 95.5% of the observations

µ± 3σ or z ± 3 gathers 99.7% of the observations

> mu = 0

> sig = 1

> low = mu - 3.5*sig

> up = mu + 3.5*sig

> x = seq(low,up, by=0.1)

> d = dnorm(x, mean=mu,sd=sig)

> plot(x,d,type="l",lwd=2,xlim=c(low,up),

+ ylab=" ",col="blue",

+ main="Standard normal Z distribution")

> abline(v=mu,lwd=1,lty=2,col="red")
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Important properties I

1. If X1 ∼ N (µ1, σ1) and X2 ∼ N (µ2, σ2) are two Gaussian

variables, then X1 + X2 ∼ N
(
µ = µ1 + µ2, σ =

√
σ2

1 + σ2
2

)
.

2. If Z1 and Z2 are two independent standard Gaussian variables,
then

Z =
Z1 + Z2√

2
∼ N (0, 1).

3. If Z1, ...,Zn are n mutually independent standard Gaussian
variables, then

Z =
Z1 + ...+ Zn√

n
∼ N (0, 1).
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Important properties II
1. If Xi , for i = 1...n, are i.i.d. Gaussian N (µ, σ) variables then

X1 + ...+ Xn ∼ N (nµ,
√

nσ),

(X1 + ...+ Xn)

n
∼ N (µ, σ/

√
n),

(Xi − µ)

σ
∼ N (0, 1),

(Xi − µ)

σ

√
n ∼ N (0, 1).

2. If Z1, ...,Zn are n mutually independent standard Gaussian
variables, then

X =
n∑

i=1

Z 2
i ∼ χ2(df = n).
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The Central Limit Theorem – CLT

The sum of n independently distributed random variables X1, X2,
... , Xn, when n gets large, tends toward a Gaussian distribution
N (µ, σ) where µ = E (

∑n
i=1 Xi ) and σ =

√
V (
∑n

i=1 Xi ).

> nSim = 10^4

> X1 = runif(nSim)

> ...

> X10 = runif(nSim)

> X = X1 + X2 + ... + X10

> mu = mean(X); sigma = sd(X)

> Zs = (X-mu)/sigma

> par(mfrow=c(1,2))

> hist(Zs, freq=F,main="from CLT")

> p = seq(-3,3,lengh=500)

> lines(p,dnorm(p))

> qqnorm(Zs), abline(0,1)
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“Normal” does not mean “normally” observed !

• The name “normal distribution” was introduced in 1893 by
Karl Pearson ; the distribution was originally discovered in
1721 by A. De Moivre, and later rediscovered and thoroughly
independently studied by Laplace (1749–1827) and Gauss
(1777–1855).

• The very importance of the Gaussian comes indeed essentially
from its mathematical properties which position this
distribution via the CLT and the Large Number Laws in the
center of mathematical statistics and measure theory.

• Examples of nearly normal random variables are, however,
very rarely observed in Nature. Even in the presence of the
CLT, extensive sampling from natural data very often reveal
systematic differences with a Gaussian distribution ; usually
due to showing much heavier distribution tails.
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Exercise
We have seen previously that twice the sum of n independent
standard exponential variables is distributed like a chi-square
variable with 2n degrees of freedom.
Similarly, we have seen that the sum of squares of n independent
standard Gaussian variables is again distributed like a chi-square
variable with n degrees of freedom.
Questions :

1. What is hence the formal relationship between standard
exponential and standard Gaussian variables ?

2. Illustrate graphically your previous result with a suitable
Monte Carlo simulation experiment.
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A didactical Gaussian random number generator

The inverse of a Gaussian cdf has, contrary to the exponential
cdf , no closed analytic form. One simple way, however to achieve
the simulation of the standard Gaussian variable Z ∼ N (0, 1) uses
the Box-Muller algorithm.
It is based on the observation that, if U1 and U2 are two
independent and identically U(0, 1) distributed uniform random
variables, then :

Z1 = R cos(Θ) =
√
−2 log(U1) cos(2πU2),

Z2 = R sin(Θ) =
√
−2 log(U1) sin(2πU2).

where R =
√

Z 2
1 + Z 2

2 and Θ = 2πU2 are resp. the length of a

vector and its angle with respect to the x-axis in a Cartesian
system whith standard Gaussian coordinates (Z1,Z2).
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The Box-Muller algorithm I

i) If V1 ∼ U(−1, 1) and V2 ∼ U(−1, 1) with
0 < U1 = (V 2

1 + V 2
2 ) < 1, the pairs (V1,V2) give uniformly

random positions within a unit circle and U1 is U(0, 1)
distributed.

> nSim = 10^4

> v1 = runif(nSim,-1,1)

> v2 = runif(nSim,-1,1)

> r2 = v1*v1 + v2*v2

> V1 = v1[r2<1]

> V2 = v2[r2<1]

> plot(V1,V2,pch="◦")
> abline(v=0,h=0,lty=2)

> U1 = V1*V1 + V2*V2

> hist(U1,freq=F)

> abline(h=1.0)
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The Box-Muller algorithm II

ii) By noticing that R2 = (Z 2
1 + Z 2

2 ) takes value in [0,∞] and :

(Z 2
1 + Z 2

2 ) ∼ χ2(R2, df = 2) ∼ 2e(−R2) ,

we may simulate R by the exponential inverse transform :

R =
√
−2 log(U1),
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The Box-Muller algorithm III

iii) Furthermore,

cos(Θ) = V1/
√
U1

and,

sin(Θ) = V2/
√
U1,

such that :

Z1 =
√
−2 log(U1)/U1×V 1 ,

and

Z2 =
√
−2 log(U1)/U1×V 2 .
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Checking the Box-Muller algorithm
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Exercise (Box-Muller implementation)

Questions :

1. Implement a Gaussian random number generator in Python
and in R based on the Box-Muller algorithm.

2. Illustrate graphically in R the distribution of your generator
when simulating a standard Gaussian variable and a Gaussian
variable with mean=2 and stddev=2.

3. Compare your results with the in-built generators both in R
and in Python.
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Multivariate Gaussian random variables

A multivariate random variable of dimension m generates a vector
x of m > 1 random numbers. We are interested here in the special
case of multivariate Gaussian variables being defined by the
multideminsional Gaussian density function :

N (x|µ,Σ) =
1

(2π)m/2 det(Σ)1/2
exp

[
− 1

2
(x− µ) ·Σ−1 · (x− µ)

]

where the parameter µ is a vector containing the multivariate
mean, and the parameter Σ, a symmetrical, positive-definite
matrix, is the distribution’s covariance.
In case m = 1 we recover the unidimensional formula seen before.
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Simulating a multivariate Gaussian variable

In case of m = 1, we may easily generate a random number x from
a N (µ, σ) law by drawing a standard Gaussian number z from
N (0, 1) and applying the transform :

x = σ · z + µ

In the general case m > 1, we first draw a random vector y of
dimension m from independent standard N (0, 1) generators.
If LLt is the Choleski decomposition of the given covaraince Σ,
where L is the ”square root” of Σ (the multivariate standard
deviation

√
Σ), we obtain a random vector x from the N (µ,Σ)

law in a similar way :
x = Ly + µ
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Simulating a multivariate Gaussian in R

par(mfrow=c(1,2))

nSim = 10^4

X1 = rnorm(nSim,2.5,4)

X2 = 0.75*X1+1.5*rnorm(nSim,5,2)

X = cbind(X1,X2)

plot(X,pch=".",col="blue")

abline(v=mean(X1),h=mean(X2))

L = chol(cov(X))

# X1 X2

# X1 4.054996 3.017995

# X2 0.000000 2.999869

Xsim = cbind(rep(0,nSim),

rep(0,nSim))

for (s in 1:nSim) {

ts = t(rnorm(2)) %*% L

+ t(c(mean(X1),

mean(X2)))

Xsim[s,1] = ts[1]

Xsim[s,2] = ts[2]}

plot(Xsim,pch=".",col="red")

abline(v=mean(Xsim[,1]),h=mean(Xsim[,2]))
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Simulating a multivariate Gaussian in R
M=cbind(X1-mean(X1),z-mean(X2))

plot(M,ylim=c(-15,15),xlim=c(-17,17),pch=".")

abline(v=0,h=0)

eigCoV=eigen(cov(X))

B=diag(2*sqrt(eigCoV$values))

%*% t(eigCoV$vectors)

ax1=rbind(B[1,],c(0,0))

ax2=rbind(B[2,],c(0,0))

lines(ax1,col="red",lwd=3)

lines(ax2,col="red",lwd=3)

Msim=cbind(Xsim[,1]-mean(Xsim[,1]),

Xsim[,2]-mean(Xsim[,2]))

plot(Msim,ylim=c(-15,15),

xlim=c(-17,17),pch=".")

abline(v=0,h=0)

eigCoVs = eigen(cov(Xsim))

Bx = diag(2*sqrt(eigCoVs$values))

%*%t(eigCoVs$vectors)

ax1 = rbind(Bx[1,],c(0,0))

ax2 = rbind(Bx[2,],c(0,0))

lines(ax1,col="red",lwd=3)

lines(ax2,col="red",lwd=3)
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Exercise
The above simulation procedure, using the empirical mean and
covariance, does work well in principle only for multivariate
Gaussian variables. Indeed all linear combinations of Gaussians are
themselves again normally distributed and completely defined by
their mean and covariance structure.
But the procedure does not usually work well for non Gaussian
multivariate random variables.
Question :
Try the above simulation procedure with different other types of
continuous random variables (uniform, triangular, exponential,
Cauchy, Beta, etc) in order to find an appropriate example that
illustrates well the potential failure of this simulation procedure.
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