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Content of Lecture 4

1. Simulating from Bernoulli and binomial variables
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Simulating a binomial random variable
The CLT for binomial distributions

2. Simulating from Poisson random variables
Simulating a Poisson random variable
Poisson processes
Poisson process simulation with exponential time intervals

3. Simulating Γ(α, β) variables
Simulating Gamma variables
Integer α parameter
The sum rule for gamma variables

4. Exercises

2 / 24

Content of the lecture Binomial RV Poisson RV Gamma RV Exercises

Simulating a Bernoulli random variable

Consider a student who guesses on a multiple choice test question
which has five options : the student may guess correctly with
probability 0.2 and incorrectly with probability 1− 0.2 = 0.8. How
well is doing this student in a simulated test consisting of 20
questions ?

> set.seed(23207)

> guesses = runif(20)

> correctAnswers = (guesses < 0.2)

> table(correctAnswers)

correctAnswers

FALSE TRUE

14 6

The student would score in this simulated test 6/20, i.e. 6 correct
answers out of 20 showing an empirical success probability of
6/20 = 0.3 .
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Simulating a binomial random variable

The sum X of m independent Bernoulli random variables, coded :
0 (False) and 1 (True), each having a success probability of p gives
a binomial random variable ∼ B(m, p) representing the number of
successes in m Bernoulli trials. X can take values in the set
{0, 1, 2, ...,m} with probability :

P(X = x) =

(
m
x

)
px(1− p)m−x , x = 0, 1, 2, ...,m.

We may compute in R the probability of observing 6 successes in
20 trials, when the success probability is 0.2 :
> dbinom(x=6,size=20,prob=0.2) = 0.1090997 .
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Simulating a discrete random variable
by inverse transform

> db=dbinom(0:5,5,0.3)

[1] 0.16807 0.36015

[3] 0.30870 0.13230

[6] 0.02835 0.00243

# cumsum(db) = cdf

> pbinom(0:5,5,0.3)

[0] 0.16807

[1] 0.52822

[2] 0.83692

[3] 0.96922

[4] 0.99757

[5] 1.00000

> u = runif(1)

[1] 0.287

# inv. cdf = quantile

> qbinom(u,5,0.3)

[1] 1

> rbinom(nSim,5,0.3)

[1] 1 2 3 1 2 ...

100%

cdf(x)

0%

x3 4

16.8%

0

52.8%

2

83.6%

96.9%

1

runif(1) = 0.287

28.7%

5

Inverse transform from the Cdf of X ~ B(5,0.3)

+0.002
+0.28

+0.132

+0.309

+0.36

+0.168

The Central Limit Theorem for binomial variables

If X ∼ B(m, p), and

Z =
X − mp√
mp(1− p)

,

then Z  N (0, 1) when m gets large.

> nSim = 10^4

> m = 100

> p = 0.4

> Z = (rbinom(nSim,size=m,prob=p) - m*p)/

+ sqrt(m*p*(1-p))

> qqnorm(Z, ylim=c(-4,4),

+ main = paste("Q-plot. m = ", m))

> qqline(Z)
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Simulating a Poisson random variable

The Poisson distribution X ∼ P(λ) is the limit of a binomial
distribution B(n, pn) when n→∞ and pn → 0, but where the
expected value npn and the variance npn(1− pn) converge to a
same constant value λ, the rate of the Poisson distribution.
The possible discrete values a Poisson variable can take are the
natural numbers {0, 1, 2, ..} with probability :

P(X = x) =
e−xλx

x!
, x = 0, 1, 2, ...

The mean and the variance of a Poisson variable are both equal to
the rate λ.
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Example of Poisson distribution

Example

Suppose traffic accidents occur at an intersection with a mean rate
of 3.7 per year. Assumimg a Poisson model, a simulation of the
potential number of accidents per year may be run in R like
follows :

> nSim = 10

> rate = 3.7

> X = rpois(n=nSim,lambda=rate)

> summary(X)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.0 3.0 3.0 3.4 4.0 6.0
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Poisson processes

A Poisson process is a simple model of the collection of events that
occur during a given time period. A homogenous Poisson process
has the following properties :

1. The number of events during a time period is Poisson
distributed with a rate proportional to the observation period ;

2. The running process has no memory of past events, i.e. the
numbers of events in non overlapping time periods are all
independent one of the other.

In particular, a Poisson process with rate λ observed in a period
[0,T ] shows on average λT events.
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Simulating a Poisson processes

One way to simulate a Poisson
process is the following :

1. Generate n as a Poisson
random number with
parameter λT ,

2. Generate n independent
uniform random numbers
on the interval [0,T ].

> lambda = 1

> T = 10

> n = rpois(1,lambda*T)

[1] 12

> events = runif(n,0,T)

> x = sort(events)

[1] 0.1841019 0.8309076 2.0048382

[4] 2.9605278 3.3489711 3.6107790

[7] 5.4219458 5.6337490 7.5043275

[10] 8.2991724 8.3431913 9.8656030

> y = rep(1,n)

> plot(x,y,pch="+",xlim=c(0,T),cex=2,

col="red",yaxt=’n’,ylab=’rate = 1’)

The Central Limit Theorem for Poisson variables

If X ∼ P(λ), and

Z =
X − λ√

λ
,

then Z  N (0, 1) if λ gets large.

> nSim = 10^4

> lambda = 100

> Z = (rpois(nSim,lambda) - lambda)/

+ sqrt(lambda)

> qqnorm(Z, ylim=c(-4,4),

+ main = paste("Poisson QQ-plot,/

+ lambda = ", lambda)

> qqline(z)
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Exponential random numbers

Exponential random variables model usually such things as failure times
T of mechanical or electronic components, or the time T it takes a
server to complete service to a customer. The exponential distribution is
characterized by a constant failure rate, denoted λ.
Random variable T has an exponential distribution with rate λ > 0 if its
cdf FT is the following :

FT (t) = P(T 6 t) = 1 − e−λt

for any nonnegative t. Differentiating the distribution function with
respect to t gives the exponential density function :

fT (t) = λe−λt

The expected value of an exponential random variable is 1/λ and its

variance is 1/λ2.
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Simulating T by inverse transform

Suppose T ∼ exp(λ). Then FT (t) = 1− e−λt = P(T 6 t).

If u denotes P(T 6 t), solving for t in u = 1 − e−λt gives

t =
− log(1− u)

λ
.

Therefore, if U ∼ U(0, 1), then 1− U ∼ U and

T = − logU

λ
∼ exp(λ)

See Lesson 3 for an R example code.

14 / 24

Content of the lecture Binomial RV Poisson RV Gamma RV Exercises

Simulating a Poisson process – another way

It can be shown that the time separating two subsequent events
occuring in a Poisson process of rate λ is exponentially distributed
with rate λ,
This leads to a simple way for simulating a Poisson process on the
fly.

Example
Simulate the moments in time where the first 25 events may occur
in a Poisson process of rate 1.5.

> X = rexp(25, rate = 1.5)

> cumsum(X)

[1] 0.7999769 1.0924413 2.2480730 2.6270703 2.8888372 4.5510017

[7] 5.4118919 5.6875902 5.8969009 6.5536986 7.6601004 7.8540837

[13] 8.2793790 9.4287367 10.5200363 10.5464784 11.4369748 11.7930954

[19] 11.9409715 12.5444665 13.2704827 14.5333422 14.6247818 16.0576074

[25] 16.1842825
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Γ(α, β) variables

The Gamma random variable X ∼ Γ(α, β), with real parameters α > 0
and β > 0, has density p(x) for x > 0 :

p(x) =
βα

∫∞
0

tα−1e−tdt
xα−1e−βx .

The mean and variance are respectively given by α/β and α/β2. In the
Γ(α, β) probability law, the β parameter enters only as a scaling :

Γ(α, β) ∼ 1

β
Γ(α, 1).

To generate a Γ(α, β) random number, it is hence sufficient to generate a

Γ(α, 1) random number and divide it by β.
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Integer alpha parameter

If X ∼ Γ(α, 1) with α a small integer, X is in fact distributed as
the waiting time to the αth event in a random Poisson process of
unit mean.
Since the waiting time between two consecutive events is
distributed following an exponential law with λ = 1, we can hence
simply add up α exponentially distributed waiting times, i.e.
logarithms of uniform random numbers.
Furthermore, since the sum of logarithms is equal to the logarithm
of the product, we may simulate X by computing the product of α
uniform random numbers and then take minus the log. .
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Simulation and visual checking of a
random variable X ∼ G(α = 3, β = 1)

> nSim = 10^4

> rl3 = -log(

+ runif(nSim) *

+ runif(nSim) *

+ runif(nSim) )

> ra =

+ rgamma(nSim,3,1)

> x =

+ seq(0,14,by=0.1)

> dg = dgamma(x,3,1)

> par(mfrow=c(1,2))

> hist(rl3,freq=F)

> lines(x,dg,lwd=2)

> hist(ra,freq=F)

> lines(x,dg,lwd=2)
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Sum rule and CLT for gamma variables

Useful properties of the gamma distribution :

1. If we have to simulate the sum of a set of independent
Xi ∼ Γ(αi , β) variables with different αi ’s, but sharing the
same β parameter, we may consider that their sum
Y =

∑
i Xi is again distributed like a gamma variable :

Y ∼ Γ(
∑

i

αi , β).

2. If X ∼ Γ(α, β) when α≫ β, then X  N (α/β, α/β2).

3. If the αi are integers, we may directly simulate X with the
minus log of the product of the corresponding number

∑
i αi

of uniform random numbers, divided by β.
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Simulate a Bernoulli variable

Exercise

1. Suppose a class of 100 students writes a 20-question True-False
test, and everyone in the class guesses the answers with a success
probabilioty of 0.2 :

1.1 Use simulation to estimate the average mark over the 100
students as well as the standard deviation of the marks.

1.2 estimate the proportion of students who would obtain a mark
of 30% or higher.

2. Write an R function which simulates 500 light bulbs, each of which
has probability 0.99 of working. Using simulation, estimate the
expected value and variance of the random variable X , which is 1 if
the light bulb works and 0 if it does not work. What are the
theoretical values ?

Simulate a binomial variable

Exercise

1. Suppose the proportion p of defective production is 0.15 for a
manufactoring operation. Simulate the number of defectives for
each hour of a 24-hour period, assuming 25 units are produced
every hour. Check if the number of defectives ever exceeds 5.
Repeat assuming p = 0.2 and then 0.25.

2. Write a binomial random variable generator in R with parameters :
’n’ successes, ’m’ trials, and success probability ’p’, using the
cumulated density function (cdf) inversion method.

3. Write a similar binomial random variable generator in R based on
the summing up of corresponding independent Bernoulli random
variables.

4. The previous generator requires m uniform pseudo random numbers
for one simulated binomial number. Design a similar generator for a
binomial random variable which requires only one uniform random
number for each simulated binomial number.
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Simulating a Poisson process

Exercise

1. Conduct a simulation experiment to check, on a large number
(nSim = 104) of realizations on a period of 10 minutes, the
reasonableness of the assumption that the numbers X of
events from a rate 1.5 per minute Poisson process which
occur between the fourth and fifth minute of these processes
are indeed Poisson distributed with rate 1.5.

2. Use the incremental quantile agent from Lesson 5 for
estimating the quantiles of distribution X .

3. Use the qqplot R command to graphically compare the
quantiles of distribution X with the quantiles of a
corresponding theoretical Poisson distribution.
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